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DEFINITIONS 
 

There are used next designators with the corresponding definitions in the 

dissertation. At the beginning we give the main model-theoretic determinations and 

designators. [1-7]. We will introduce more complicated notions in further sections. 

 

A signature or a language Σ (or L) consists of the following symbols: 

1) functional symbols fi 

2) relational symbols Ri 

3) constant symbols ci 

 

An L-structures 𝑁 = ⟨𝑁; 𝑓𝑖 , 𝑅𝑖 , 𝑐𝑖⟩𝑖∈ℕ is defined as follows: an universe N of a 

structure with f
N
: 𝑁𝑓𝑖 → 𝑁, 𝑅𝑖 ⊆ 𝑁 and 𝑐𝑖  𝑓𝑟𝑜𝑚 𝑁.  

 

We say that A is convex in 𝑁 for subset 𝐴 of a linearly ordered structure 𝑁 if it 

follows 𝑎 < 𝑐 < 𝑏 where 𝑐 ∈ 𝐴 for any 𝑎, 𝑏 ∈ 𝐴 such that 𝑎 < 𝑏.  

 

Let ℳ, 𝒩  be structures of a signature Σ. We say that ℳ is a substructure of 

𝒩  (denoted by ℳ ⊂ 𝒩) if for any quantifier free formula 𝜓(𝑧1, . . . , 𝑧𝑛) and for any 

𝑐1, … , 𝑐𝑛 𝑓𝑟𝑜𝑚 𝑀 the next holds:  

 

 ℳ ⊨ 𝜓(𝑐1, . . . , 𝑐𝑛) ⇔ 𝒩 ⊨ 𝜓(𝑐1, . . . , 𝑐𝑛). 
 

Suppose ℳ, 𝒩 are structures of a signature Σ. ℳ is called an  elementary 

submodel of 𝒩(notation is ℳ°𝒩) if for every formula 𝜓(𝑧1, . . . , 𝑧𝑛) and for all 

𝑐1, … , 𝑐𝑛 𝑓𝑟𝑜𝑚 𝑀 the next holds: 

 

ℳ ⊨ 𝜓(𝑐1, . . . , 𝑐𝑛) ⇔ 𝒩 ⊨ 𝜓(𝑐1, . . . , 𝑐𝑛). 
 

We say that a formula 𝑈(𝑥, 𝑦) is convex to the right where 𝑈(𝑥, 𝑦) is a formula 

in a linearly ordered structure ℳ if   

 

 ℳ ⊨ ∀𝑥∀𝑦[(𝑥 < 𝑦 ∧ 𝑈(𝑥, 𝑦)) → ∀𝑧(𝑥 < 𝑧 < 𝑦 → 𝑈(𝑥, 𝑧))] 
 

Suppose 𝒩 is a linearly ordered structure. We say that (𝐴; 𝐶)-cut in 𝐵 in case 

of the splitting of 𝐵 ⊂ 𝑁 into two convex subsets 𝐴 and 𝐶 (𝐴 < 𝐶; 𝐴 ∪ 𝐶 = 𝐵). If 𝐴 

has a supremum or 𝐶 has a infimum in 𝐵 ∪ {−∞, ∞}, thereat the (𝐴; 𝐶)-cut is said to 

be  rational. Else, the (𝐴; 𝐶)-cut is irrational. Sometimes, by (𝐴; 𝐶)-cut we mean the 

next a number of formulas:  

 

 {𝑎 ≤ 𝑧 ≤ 𝑐|𝑎 𝑓𝑟𝑜𝑚 𝐴, 𝑐 𝑓𝑟𝑜𝑚 𝐶}. 
 

Suppose 𝑝 𝑓𝑟𝑜𝑚 𝑆1(𝐵). We say that a 𝐵-definable formula Ψ(𝑧, 𝑡) is  𝑝-

preserving or 𝑝-stable if for every 𝛽 ⊨ 𝑝 there are 𝛼1, 𝛼2 ⊨ 𝑝, that  
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 𝛼1 < Ψ(𝑁′, 𝛽) < 𝛼2. 
 

In occation, where 𝛽 is right (left) endpoint of set Ψ(𝑁′, 𝛽) we say that formula 

is convex to the left (right). 

 

If ∃ 𝐺(𝑧, 𝑡, 𝑏̅) (𝐸(𝑧, 𝑡, 𝑏̅)) formula which is the greatest 𝑝-preserving convex to 

the left (right) 2-B-formula thereat 𝑝 is  semi-quasisolitary to the left (right) where 

𝑝 𝑓𝑟𝑜𝑚 𝑆1(𝐵) is a non-algebraic type. It is called that 𝑏̅ 𝑓𝑟𝑜𝑚 𝐴. It means that for 

every 𝑝-preserving convex to the left formula Ψ(𝑧, 𝑡, b), and for every 𝛽 ⊨ 𝑝 

Ψ(𝑁′, 𝛽, 𝑏̅) ⊆ 𝐺(𝑁′, 𝛽, 𝑏̅)  

 

If type 𝑝 𝑓𝑟𝑜𝑚 𝑆1(𝐵) is semi-quasisolitary to both sides then it is called to be 

quasisolitary.  

  

Let 𝑝 𝑓𝑟𝑜𝑚 𝑆1(𝐵) be quasisolitary. When the greatest convex to the left and to 

the right formula 𝐹(𝑧, 𝑡, 𝑏̅) ≡ 𝑧 = 𝑡 then it is called that 𝑝 is solitary  
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NOTATIONS AND ABBREVIATIONS 

  

¬     negation  

∀     universal quantifier  

∃     existential quantifier  

→     implication  

∧, ∨     disjunction and conjunction 

≡     elementary equivalence  

𝒩, ℳ, . ..     structures  

≺     elementary substructure  

⇔     if and only if  

⊨     satisfaction in structure  

Σ, 𝕃, . ..     languages  

𝐶, 𝐷, . ..     sets 

𝑐, 𝑑, . ..     elements of structures  

𝑐̅, 𝑑̅, . ..     tuples  

𝑁, 𝑀, . ..     universes of structures  

𝛽, 𝛾, . ..     elements of extensions of structures  

𝑞(𝑧̅), 𝑝(𝑡̅), . ..     types  

𝜑(𝑧̅), 𝜓(𝑡̅), . ..     formulas  

𝐶 < 𝐷     all elements of set 𝐶 are less than any element of set 𝐷  

|𝐶|     cardinality of a set 𝐶  

𝜓(𝑁)(𝑞(𝑁))     set of realizations of a formula 𝜓 (type 𝑞) in 𝒩  

𝑉𝑝(𝛼), 𝑄𝑉𝑝(𝛼)     neighbourhood, quasi-neighbourhood of 𝛼 in type 𝑝 

𝑇ℎ(𝒩)     𝒩 structure theory  

𝑆𝑚(𝑇)(𝑆𝑚(𝐶))     set of any complete 𝑚-type (over set 𝐶) of theory 𝑇  

𝐼(𝑇, 𝛾)     number of models of cardinality 𝛾 of 𝑇  

𝑡𝑝(𝑐|𝐶)     type of 𝑐 over the set 𝐶  

𝑑𝑐𝑙(𝐶)(𝑎𝑐𝑙(𝐶))     definable (algebraic) closure of a set 𝐶  

⊥𝑤     relation of weak orthogonality of types  

⊥𝑎     relation of almost orthogonality of types  
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INTRODUCTION 

 

The research theme actuality. At present expansion of models by new 

relations is one of the primary directions of reseach in theory of models which is part 

of the mathematical logic. 

The underlying theme in model theory is to classify first order theories. The 

first approximation in classifying was Shelah’s notion of  stable theory. Which 

recently has broadened and nowadays includes NIP theories.  

Theory 𝑇 is named to possess the independence property (IP), whenever it is 

possible to find a formula 𝜓(𝑧̅, 𝑡̅) such that in every model 𝔐 of 𝑇 for each 𝑚 < 𝜔, a 

family of tuples 𝑏̅1, … , 𝑏̅𝑚 exists, to such an extent that it is easy to find a tuple 𝑐𝐽̅ in 

𝔐 such that 𝔐 ⊨ 𝜓(𝑐𝐽̅, 𝑑̅𝑗) ⇔ 𝑗 ∈ 𝐽 for every subset 𝐽 of 𝑚. If it doesn’t exist such 

formula, then 𝑇 is said to have NIP, that is not the independence property. 

Important part of investigating complete theories is to examine specifications 

of new relations necessary and/or sufficient to change class of model of complete 

theory in new signature or preserve it. One of the most significant classes of complete 

theories in NIP theories along with stable theories are o-minimal theories and a wider 

class including o-minimal theories - weakly o-minimal theories. This classes of 

theories are in the main scope of exploration of this work. 

Leading specialists in model theory, such as B.I. Zilber, E. Hrushovski, A. 

Nesin, B. Poizat, G.Cherlin, J. Baldwin, E. Bouscaren, A. Wilkie, Ch. Steinhorn, D. 

Macpherson, D. Marker, B. Baizhanov, S. Shelah, M. Benedikt, A.Pillay, have 

received profound results in different problems of expansions. 

J.T. Baldwin and K.Holland found sufficient conditions that there is model 

complete theory behind every unary 𝜔1-categorical expansion of strongly minimal 

model. D. Macpherson, Ch. Steinhorn and D. Marker have verified that an expansion 

of weakly o-minimal structure by particular type of convex unary predicate preserves 

weak o-minimality. B.S. Baizhanov has resolved problem of the weakly o-minimal 

theories expansion using unary convex predicate [8]. B. Sh. Kulpeshov presented the 

concept of convexity rank and obtained a description of weakly o-minimal theories in 

terms of definable sets of one-types convexity. Thesis concerns different classes of 

expansions of finite convexity rank weakly o-minimal theories which is quite new 

class of complete NIP theories. 

The aim of the work is to examine issues of certain properties preservation 

(like quite o-minimality, weak o-minimality, countable categoricity, model 

completeness, convexity rank and others) in the process of expansion of models. 

The objectives of the work are the following:   

- Investigate inquiries of certain properties preservation of expantion of models 

by unary predicates.  

- Investigate inquiries of certain properties preservation of expantion of models 

by equivalence relations.  

- Investigate inquiries of certain properties preservation of expantion of models 

by arbitrary binary predicates.  
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The main states for the dissertation defense:  

- Touchstone for maintaning aleph-nought categoricity in the process of 

weakly o-minimal expansion of a non-1-indiscernible weakly o-minimal aleph-

nought categorical theory of convexity rank 1 by every single binary predicate. 

- Touchstone for maintaning aleph-nought categoricity for a weakly o-minimal 

expansion of a 1-indiscernible weakly o-minimal aleph-nought categorical theory of 

convexity rank 1 by every single binary predicate. 

- Maintaining weak o-minimality when expanding a weakly o-minimal ordered 

group by an externally definable binary predicate. 

- Touchstone for keeping weak o-minimality and countable categoricity (and 

the 1-indiscernibility in addition to this). It is in next case. A weakly o-minimal 1-

indiscernible countably categorical theory which has finite convexity rank is 

considered. A model of the theory is expanded using an relation of equivalence 

splitting the universe into infinite number of infinite convex classes.  

- Maintaining quite o-minimality, countable categoricity and convexity rank 

when expanding a model of a quite o-minimal countably categorical theory by a 

convex unary predicates family which is finite.  

- Maintaining the convexity rank and the countable categoricity under 

expantion of a theory model where theory is countably categorical weakly o-minimal 

with finite convexity rank and expantion is made by a convex unary predicates family 

which is finite.  

The objects of research are complete NIP theories (theories lacking the 

independence property) and models of NIP theories. In particular, NIP theories 

include weakly o-minimal theories and stable theories. 

The research subjects models of NIP theories, their properties and properties 

of these models under expansion by unary or binary predicates or equivalence 

relations 

Methods of research: In the dissertation we use Classical Model Theory 

methods (in particular, method of quantifier elimination), inclusive of the ones which 

have been developed in model theory since 1980’s and later. Among them we can 

note the methodology of investigating ordered structures, based on such notions as o-

minimality and variants of o-minimality. In such cases it is typical to apply strict 

restrictions on sets definable by a formula which has the only free variable. Thus, if 𝐿 

is a language which includes language 𝐿0 = {<}, where < is a linear order on an o-

minimal structure 𝑁 and every single definable subset of the structure 𝑁 is quantifier-

free in 𝐿0 then we can consider the o-minimal structure 𝑁 as 𝐿-structure. It gives 

pattern for other determination. We set another unknown language instead language 

𝐿0. Then we regard 𝐿-structures to an extent so that the 𝐿0-reduct is linear order or 

language of some stipulate type. And we want all definable subsets of structure 𝑁 are 

𝐿0-definable (quantifier-free). It is possible to require for every model of the theory. 

Aside from that, we can note the methods of researching ordered structures developed 

in the last 20 years, such as describing models through analysis of behaviour of 

definable unary functions, the examine of models via systematization by convexity 

rank and others. 
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Scientific novelty of the dissertation research. Preservation of properties of 

expansion of models of complete theories such as NIP theory problem is unsettled at 

present. Contained in the survey classes of theories haven’t been researched on an 

considered expansions.  

Practical and theoretical research significance. Systematization of complete 

NIP theories stem from researches in this area. We can apply anticipated conclusions 

on the essence of expansions to the fields, rings and groups theories.  

Dissertation thesis connection the with the another scientific investigation 

works. The following list shows scientific projects within framework of which PhD 

dissertation was carried out. Scientific projects of the program of grant financing of 

fundamental researches of the MES of Republic of Kazakhstan: “Properties of types 

in dependent theories” (2015-2017, 5125/GF4), “Basic and derived objects for 

ordered and generating structural objects as well as elementary theories” (2018-2020, 

AP05132546) and “Conservative extensions, countable ordered models and closure 

operators” (2018-2020, AP05134992). 

Approbation of obtained results: PhD thesis results are tested at many 

foreign and domestic international scientific conferences and seminars: 

- The 12th International Conference School "Problems Allied to Universal 

Algebra and Model Theory" (2017, Russia, Erlagol);  

- The Sixth Congress of the Turkic World Mathematical Society (Astana, 

2017); 

- ASL European Summer Meeting "Logic Colloquium" (Udine, Italy, 2018);  

- International Conference "Mal’tsev Meeting" (Novosibirsk, Russia, Institute 

of Mathematics, 2017, 2018);  

- ASL North American Annual Meeting (Macomb, USA, Western Illinois 

University, 2018);  

- The 6-thWorld Congress and School on Universal Logic (2018, France, 

Vichy);  

- The Sixteenth Asian Logic Conference (Nur-Sultan, 2019);  

- Annual International April Mathematical Conference (Almaty, Institute of 

Mathematics and Mathematical Modeling, 2017, 2018, 2019, 2020).  

Publications: Research findings of the PhD thesis were published in 20 works, 

including 3 articles published in journals having a non-zero impact factor according 

to international databases Web of Science and (or) Scopus; 4 papers published in 

domestic journals recommended by CCFES of the Ministry of Education and Science 

of Kazakhstan. Also 13 abstarcts were published in materials of international 

scientific conferences.  

Dissertation volume and structure. The dissertation consists of next units 

and structural item: page of title, contents, prescriprive references, abbreviations, 

notations and definitions, introduction, five sections  (historical review, expansions of 

models by unary predicates, expansions of models by equivalence relations, 

expansions of models by binary arbitrary predicates, external definability and model 

completeness), inference and links. Dissertation’s total number of pages equals 78. 

The work includes 94 references and four pictures.  
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Dissertation work main content. Section “Introduction” of the thesis includes 

the dissertation work aim, the research objectives of the thesis. It shows relevance of 

science research topic, scientific novelty of the research. There are the objects of 

investigation and the investigation subjects, primary states for the dissertation 

defence in the Introduction. The section explains practical and theoretical dissertation 

significance. There are described research methods. In the introduction there are 

given connection of the research thesis work with another scientific investigation 

works, approbation of obtained results, publications, as well as volume, structure and 

main content of the PhD thesis. 

The first section describes the historical background and the present state of the 

model theory are under investigation. 

The second section of the dissertation provides basic information and considers 

expansions of models by unary predicates. 

The third section is devoted to expansions by equivalence relations of 

countably categorical, weakly ordered-minimal theories. Found a criterion for 

preserving countable categoricity and weak ordered-minimality. 

In the fourth section of the dissertation considers arbitrary binary expansions of 

1-indiscernible and non-1-indiscernible countably categorical models, weakly 

ordered-minimal theories of convexity rank 1. 

The fifth section is focused on the class of externally definable expansions in 

the scope of preserving model completeness. 

To fill out the section’s main result we also show different examples of 

expansions which does not preserve certain properties. 

The conclusion lists and generalizes the key conclusions reached in the PhD 

thesis. 
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1 HISTORICAL REVIEW 

 

Throughout all the history the establishment of theory of models may be 

related to a number of directions.  𝑁 model of signature Σ of first order predicate 

logic solves the complete elementary theory of given model, 𝑇 equals to 𝑇ℎ𝑒𝑜𝑟𝑦 𝑁, 

it means the set of sentences of signature Σ, that holds in this model. We say two 

models 𝑁1 and 𝑁2 of identical signature are elementary equivalent whensoever their 

elementary theories match or 𝑇ℎ𝑒𝑜𝑟𝑦 𝑁1 𝑒𝑞𝑢𝑎𝑙𝑠 𝑡𝑜 𝑇ℎ𝑒𝑜𝑟𝑦 𝑁2. Investigations of 

elementary theory 𝑇 were droven by four main pathways of research: 

- Elementary theory decidability;  

- Quantity of non-isomorphic models of complete theories;  

- Elementary theory axiomatizability; 

- Expansion of models by new relations.  

We state that a model 〈𝑀, Σ+〉 is an expansion of a model 〈𝑀, Σ〉 if Σ ⊂ Σ+. 

The expansion is called an  essential expansion if forbye there exists an 𝑛-ary Σ+-

formula 𝜑(𝑥), to such an extent that the set 𝜑(𝑀𝑛) is not definable over 〈𝑀, Σ〉. 
The dominant problem in this field of model theory is: for requisite features of 

the initial model, to obtain a conditions for the new relations, with the purpose that 

under expansions by these relations requisite features are preserved. 

These features can be hereinafter: model completeness (for example expansion 

of weakly o-minimal model complete theories), expanded model elementary theory 

decidability (for instance, exponential function expansion of the theory of the real 

numbers field, open question), strong minimality, omega-stability, superstability, 

stability, o-minimality, weak o-minimality, finite cover property, no independence 

property, and others. 

Researches in second half of the preceding century occasioned in the complete 

theories segregation into classes, subject to the nature of definable sets and their 

systems. 

In the preceding decades expansion challenges are suitable for all classes of 

complete theories. Systematization of complete theories is displayed in Picture 1: 
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Picture 1
1
 - Complete Theories 

 

Major experts in model theory got extensive results in distinct challenges of 

expansions (expansion by elementary substructures, automorphisms, nonelementary 

substructures, non-indiscernible sets etc.). 

Strongly minimal theories (B.I. Zilber, E. Hrushovski, A. Baduisch, B. Poizat, 

E.A. Palutin, J. T. Baldwin, K. Holland, V.V. Verbovskiy, S. Buechler, A.T. 

Nurtazin, A. Pillay, M. Macintyre, B. Baizhanov - J. Baldwin etc.). 

𝜔-stable (A. Nesin, A. Borowik, B. Poizat, G. Cherlin, B. Zilber, J. Baldwin - 

K. Holland, A. Baduisch and others). 

Superstable (E. Bouscaren, T.G. Mustafin, B. Poizat, B Baizhanov - B. 

Baldwin - S Shelah, E. A. Palyutin, A.A. Stepanova and others). 

Stable (B. Poizat, E. Bouscaren, J. Baldwin - M. Benedikt, Kazanova - Ziegler, 

B. Baizhanov - J. Baldwin, K. Kudaibergenov and others). 

O-minimal (L. Van den Dries, A. Wilkie, Ch. Steinhorn, A. Pillay, D. Marker, 

D. Macpherson, E.A. Palyutin, S. Starchenko, Peterzil, B. Baizhanov, E. Baisalov - 

                                                      
1 http://www.forkinganddividing.com/ 
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B. Poizat and others). 

Weakly o-minimal (D. Macpherson – D. Marker – Ch. Steinhorn, E.A. 

Palyutin, B.S. Baizhanov, V.V. Verbovskiy, B.Sh. Kulpeshov, R.D. Arephyev, R. 

Vencel and others). 

Quasi o-minimal (O. Belegradek - A. Strobushkin - M. Taitslin, J. Baldwin - 

M. Benedikt and others). 

Quite o-minimal (B. Kulpeshov, V.Versbovskiy). 

Dependent (NIP) theories (S. Shelah, H.D. Macpherson – D. Marker – Ch. 

Steinhorn, J. Baldwin, M. Benedikt, A. Pillay, F. Wagner, V. Verbovskiy and others). 

Simple (S. Shelah, E. Hrushovski, E.A. Palyutin, B. Poizat, N. Kim, A. Pillay, 

M. Macintyre, F. Wagner, V. Kolesnikov, Vasilyev - Itay, Pillay - Poltakovskaya and 

others). 

𝐸∗-stable (E.A. Palyutin, T.G. Mustafin, B. Poizat, T. Nurmagambetov, A. 

Stepanova and others). 

Numerous outcomes were revealed in the upcoming classes of complete 

theories: dependent theories, weakly o-minimal theories, o-minimal theories, stable 

theories, superstable theories, o-stable theories, strongly minimal theories. 

The upcoming approach the expansion problem can determined: 

Let 𝐶1, 𝐶2 be individual classes of complete theories, if 〈𝑀, Σ〉 is a model of 

some complete theory 𝐶1, then which considerations on new relations are necessitous 

and/or sufficient for the purpose of having 〈𝑀, Σ+〉 be a model of theory 𝐶2? 

Consider results in alpha quadrant in Picture 2. 
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Picture 2 – Alpha Quadrant 

 

Strongly minimal theories. 

A theory is titled  strongly minimal if in every single model every definable set 

is finite or negation of this definable set is finite (1971) [9]. A problem of unary 

function expansions of an algebraically closed field, to such an extent that this 

function is an automorphism was examined by A. Macintyre. B. Zilber began to 

investigate the systematization of strongly minimal theories as chunk of a 

investigation of the uncertainty of finite axiomatizability and the spectrum of 

complete theories. Zilber suggested a hypothesis on the geometry of strongly minimal 

theories. Hypothesis: For strongly minimal theories the geometry arising from the 

algebraic closure operation is either one of the upcoming types: expansions of an 

algebraically closed field, trivial or locally modular. E. Hrushovski (1988) built an 

illustration of a strongly minimal non-locally-modular theory, so that this theory can 

not be interpreted in a field, and in the theory a group is not interpreted. That is a 

counterexample to Zilber’s hypothesis. V.V. Verbovskiy verified for that example 

that its elementary theory doesn’t accept  exclusion of imaginaries [10, 11] (2002, 

2006). In 2004 B.S. Baizhanov and J.T. Baldwin showed: for all strongly minimal 

theory the upcoming holds true: expansion by an arbitrary set is stable (superstable) 

whenever the strongly minimal formula has trivial geometry [12]. However in 2004 

J.T. Baldwin and K. Holland established possibility of unary predicate expansion of 

an algebraically closed field to such an extent that structure obtained after expansion 
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would be omega-stable of Morley rank 𝜅 for any natural 𝜅 [13]. 

Omega-stable theories.  

Bruno Poizat in his research articals published in The Journal of Symbolic 

Logic in 1999 and 2001[14, 15] constructed finite Morley rank omega-stable field, 

which has two arbitrary unary predicates. John T. Baldwin and Kitty Holland found 

out that it has non-model-complete teory. In their 2004 work published in journal 

“Annals of Pure and Applied Logic” [13, P. 159] J.T. Baldwin and K. Holland 

revealed sufficient requestes, that a strongly minimal model has a model complete 

theory in case by unary predicates for every 𝜔1-categorical expansion. In example 

constraction Hrushovski put notions “pre-dimension and dimension” of finite 

structures as foundation. When he built omega-stable theory, of a finite extension of 

the designated finite structure, Hrushovski determined dimension as pre-dimension.  

In 2003 premised on the conception of topological space completion, V.V. 

Verbovskiy has developed a pre-dimension defining technique on one class of infinite 

structures, which has enabled to transfer to the study of generic stable structures on 

the manner of studying generic omega-stable structures [16]. 

Superstable theories. 

For superstable theories Elisabeth Bouscaren examined sufficient expansions 

of models by unary predicate establishing an elementary substructure. 

In 1989 she verified that an absense of the dimension order property in the 

initial superstable theory implies stability (superstability) of a pair of models is stable 

(superstable) and vice versa [17]. In 1988 E. Bouscaren and B. Poizat verified that in 

stable theories this outcome does not possess [18], by building an example of non-

superstable theory, where pairs of models theory is complete and stable and 

dimension order property possess. In 1989 part of Bouscaren’s [17, P. 205] evidence 

was that she verified that in the expanded language the types identity over the two 

tuples  follows from the types of the tuples in small model identity in the original 

language. Suchlike characteristic is considered being benign. In 2005 J. Baldwin, 

B.S. Baizhanov and S. Shelah have verified that sameness of strong types of the 

original language tuples over random set of superstable model causes sameness of 

types over expanded language tuples [19]. Such characteristic is considered being 

weakly benign. It is thus confirmed weakly benignity of each and every superstable 

theory sets.  

Stable theories. 

Couples of stable theory model, to an extent that large model is satiated over a 

submodel were examined by Bruno Poizat. He named such a couple of models lovely 

pair. In 1983 he verified that there is no finite cover property in the initial theory 

whenever the theory of lovely pairs is complete [20]. In 2000 steadiness of a satiated 

expansion of model of stable theory by predicate, which  discern a non-definable set 

were proved by Baldwin and M. Benedikt [21]. Results from [21, P. 4937] were 

enhanced by E. Casanovas and M. Ziegler in 2001, by getting rid of the 

indiscernibility, and establishing non finite cover property in terms of this set [22]. 

The outcomes of Baldwin-Benedikt-Casanovas-Ziegler and the outcomes B. Poizat 

and E. Bouscaren of were enhanced by B.S. Baizhanov and J. Baldwin, by verifying 
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that the weakly-benign set constraint of an expanded model has stable theory 

whenever the weakly benign expansion of model preserves stability (resemblant 

outcome takes place for the class of superstable and 𝜔-stable theories as well). 

Moreover in 2004 Casanovas-Ziegler’s question on designation of the characteristics 

of the model 𝔐 having finite cover property in regards to set 𝐴 was answered by B.S. 

Baizhanov and J.T. Baldwin [12, P. 1243]. 

Consider the beta quadrant in Picture 3. 

 

 
Picture 3 – Beta Quadrant 

 

O-minimal theories. 

The dynamic investigation of linearly ordered theories founded on the concept 

of o-minimality has started since the middle of 80’s. In 1996 one of the significant 

results is real numbers field unary expansion, which is o-minimal, decidable and 

admits quantifier elimination, by exponential function has a model completeness 

property and it’s theory is o-minimal was verified by Alex Wilkie [23]. In 1997 van 

den Dries, A. Macintyre, D.Marker showd that every single o-minimal structure on ℝ 

produces a family of definable sets that has local triviality, stratification and property 

of uniform finiteness and is quite stable under various topological / geometrical 

operations [24]. The property that every single structure elementary equivalent to a 



17 
 

structure linearly ordered is o-minimal whenever a structure linearly ordered is o-

minimal as well verified by Ch. Steinhorn, A. Pillay and J. Knight. Furthermore in 

1986 and 1988 they clarified definable functions characteristics [25-27]. In 2007 

K.Zh. Kudaibergenov enhanced the Marker’s outcomes in o-minimal theories about 

small extensions of models in [28]. In 2007 B.S. Baizhanov verified that there exists 

an elementary extension to extent that the unary partial functions class with definable 

parameters is not identical to the unary partial functions class, defined over original 

language parameters whenever ordered-minimal expansion of a 𝑇 theory model that 

is dense ordered-minimal and accepts QE is essential [29]. 

Let 𝕄 = 〈𝑀, Σ〉, 𝐴 ⊂ 𝑀 to such an extent that 𝐴 ≠ Θ(𝑀, 𝑎̅) for every single 

definable set of structure 𝕄+: = 〈𝑀, Σ ∪ {𝑃}〉. When investigating new formulas of 

the expanded model for the formula 𝜑(𝑥, 𝑦̅) of the initial language, the formula of the 

expanded language ∃𝑥(¬𝑃(𝑥) ∧ ∀𝑦̅(∧𝑖 𝑃(𝑦𝑖) → 𝜑(𝑥, 𝑦̅))) broaches two questions 

linked to the 𝜑-type of the model of the original theory: 

Will the set {𝜑(𝑥, 𝑎̅)|𝑎 ∈ 𝐴} be consistent? 

Is the 𝜑-type over the set A be realized in the model? 

In some cases, positive answers to these questions suggest the nature of 

formulas of the expanded model: lovely pairs of models (B. Poisat [20, P. 239]), 

small indiscernible set (Baldwin-Benedikt [21, P. 4937]), small set without the finite 

cover property with respect to this set (Casanovas-Ziegler, [22, P. 1127]), lovely pairs 

(Pillay-Vassiliev [30]), H-structures (Berenstein-Vassiliev [31]). 

The notion of geometric theories were originated by E. Hrushovski and A. 

Pillay in [32] (1994). It is a regular comprehensiveness of the classes of dense o-

minimal and strongly minimal theories in as much as it admits the elimination of 

“there are infinitely many” quantifier property and the algebraic closure exchange 

property, which is geometric theory. Since 2010 A. Berenstein and E. Vassiliev have 

been studying unary predicate expansions of geometric theories, such that predicate 

has extension and density properties as well as investigating interconnections of the 

properties of the initial theory and the properties of expanded theories [31, P. 866; 

33-34]. Their work is basen on the concept of simple theory models – lovely pair. 

Belle pair – lovely pair of models of a simple theory was examined by Bruno Poizad. 

In [30, P. 491; 35-38] A. Berenstein and E. Vassiliev developed and studied it. 

Weakly o-minimal theories. 

The French-Kazakh Colloquium on model theory in Almaty in June 1994 was 

accompanied by extensive amounts of prominent scientists. An american scientist 

Charles Steinhorn pontificated on the Colloquium with a report on o-minimality. 

Since then the collaboration of B.S. Baizhanov and other Kazakh colleagues with Ch. 

Steinhorn arose. 

Charles Steinhorn has sent article draft of  D. Macpherson, D. Marker, Ch. 

Steinhorn [39] on weak o-minimality and a parcel of copies of works on o-minimality 

by J. Knight, A. Pillay, C. Steinhorn [25,  P. 565; 26, P. 593; 27, P. 469], L. Mayer, 

D. Marker, Ch. Steinhorn, A. Pillay, [40-43] Kazakh scientists resolved all the 

problems stated in the works on weak o-minimality [39, P. 5435].  

External definability.  
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D. Macpherson, D. Marker, Ch. Steinhorn approach. In 1994 it was verified by 

D. Macpherson, D. Marker, Ch. Steinhorn (in the draft [39, P. 5435]) that for an o-

minimal structure expansion by predicate preserves weak o-minimality in case that 

such predicate is “unary convex predicate” and it is crossed by a uniquely realizable 

cut. According to D. Marker [40, P. 63] 1-type uniquely realizable over a model M, 

that is if for every single 𝛼 realizing this 1-type 𝑝, 𝛼 is the only realization of 𝑝 in 

𝑃𝑟(𝑀 ∪ {𝛼}), has the corresponding characteristic: there is no definable function 

operating on the type’s set of realizations. Two structures simultaneously was 

considered by Macpherson-Marker-Steinhorn: 𝔎+ = 〈𝑀; Σ ∪ {𝑈1}〉 and 𝔏 = 〈𝑁; Σ〉, 

that is a satiated 𝔐 elementary extension and a model of o-minimal theory. A new 

unary convex predicate 𝑈 was defined with an element 𝛼 ∈ 𝑁\𝑀 that is the 

realization of type 𝑝 ∈ 𝑆1(𝑀), an irrational 1 −type, to such an extent that the 

following holds for every d from M: 

  

𝔎+ ⊨ 𝑈(𝑑) ⇐ 𝔏 ⊨ 𝑑 < 𝛼. 

 

The signature Σ+ = Σ ∪ {𝑈1} formulas 𝛾(𝑦̅) are constructed by induction. It 

implies a signature Σ formula 𝐾𝛾(𝑦̅, 𝛼) exists to an extent that for any 𝑑̅ from M  the 

following holds: 

𝔎+ ⊨ 𝛾(𝑑̅) ⇐ 𝔏 ⊨ 𝐾𝛾(𝑑̅, 𝛼). 

 

The occasion 𝛾(𝑦̅) = ∃𝑥𝜓(𝑥, 𝑦̅) was the decisive point in this construction. 

They defined  

 

𝐾∃𝑥𝜓(𝑥,𝑦̅)(𝑦̅, 𝛼): = ∃𝑧1∃𝑧2∃𝑥(𝑧1 < 𝛼 < 𝑧2 ∧ ∀𝑧(𝑧1 < 𝑧 < 𝑧2 → 𝐾𝜓(𝑥,𝑦̅)(𝑥, 𝑦̅, 𝑧)). 

 

Although 1-type 𝑝 from 𝑆1(𝑀) is uniquely realizable, 1-formulas over 𝑀𝛼 

convex to the right and the left from 𝛼 have solutions  outside 𝑝(𝔏). Hence if 

𝔏 ⊨ 𝐾∃𝑥𝜓(𝑥,𝑦̅)(𝑑̅, 𝛼), so for certain 𝑏1, 𝑏2 ∈ 𝑀 for every single 𝑑̅ 𝑓𝑟𝑜𝑚 𝑀,  

 

𝔏 ⊨ ∃𝑥(𝑏1 < 𝛼 < 𝑏2 ∧ ∀𝑧(𝑏1 < 𝑧 < 𝑏2 → 𝐾𝜓(𝑥,𝑦̅)(𝑥, 𝑑̅, 𝑧)). 

 

It means the previous formula segment holds on 𝔎 , namely  

 

 𝔎 ⊨ ∃𝑥∀𝑧(𝑏1 < 𝑧 < 𝑏2 → 𝐾𝜓(𝑥,𝑦̅)(𝑥, 𝑑̅, 𝑧)) 

 

Hence there exists 𝑐 𝑓𝑟𝑜𝑚 𝑀 to such an extent that  

 

 𝔎 ⊨ ∀𝑧(𝑏1 < 𝑧 < 𝑏2 → 𝐾𝜓(𝑥,𝑦̅)(𝑐, 𝑑̅, 𝑧)). 

 

Consequently 𝐾𝜓(𝑥,𝑦̅)(𝑐, 𝑑̅, 𝑧) ∈ 𝑝. 

So for every single Σ+-𝑀-1-formula 𝜙(𝑥, 𝑎̅) the set of all its realizations in 𝔎+ 
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will be a convex sets finite union, 𝛾(𝔎+, 𝑑̅) = 𝐾𝛾(𝔏, 𝑑̅) ∩ 𝑀, owing to the fact that 

𝐾𝛾(𝔏, 𝑑̅) consists of finite union of points and intervals. Elementary theory of 𝔎+’s is 

weakly o-minimal being that the number of convex sets is not infinite and because of 

this doesn’t depend on parameters. 

There was made a systematization of the non-orthogonality of 1-types theory 

in [25, P. 565; 40, P. 63; 41, P. 146; 42, P. 185]. On this basis in 1995 it was found 

out that the case of 𝑝 𝑓𝑟𝑜𝑚 𝑆(𝑀) is type that is non-uniquely realizable. (Pillay-

Steinhorn, D. Marker, L. Mayer, Marker-Steinhorn, 1986–1994), B.S. Baizhanov 

proffered [44] to take the constants for 𝐾∃𝑥𝜓(𝑥,𝑦̅) from an indiscernible infinite 

sequence 〈𝛼𝑛〉𝑛<𝜔 over 𝑀 where 𝛼𝑛 is from 𝑝(𝔏). When 𝐾𝜓(𝑥,𝑦̅)(𝔏, 𝑑̅, 𝛼̅𝑛) ∩ 𝑀 = ∅ 

there exists a finite number of irrational cuts in other words one-types over M, to 

such an extent that for every single such one-type 𝑟 ∈ 𝑆1(𝑀), the subset 

𝐾𝜓(𝑥,𝑦̅)(𝔏, 𝑑̅, 𝛼̅𝑛) of  

𝑄𝑉𝑟(𝛼̅𝑛): = {𝛽 ∈ 𝑟(𝔏)| there exists an 𝐴 ∪ {𝛼̅𝑛}-1-formula Θ(𝑥, 𝛼̅𝑛), such that  

 

𝛽 ∈ Θ(𝔏, 𝛼̅𝑛) ⊂ 𝑟(𝔏)}. 
 

There was obtained the one-types systematization over “weakly o-minimal 

theory” model subset by B.S. Baizhanov in 2001 [8, P. 1382]. He solved a problem of 

expanding a “weakly o-minimal theory” model by an unary convex predicate. The 

monotonicity characteristic for definable functions on weakly ordered-minimal 

structures was verified by R.D. Aref’ev in 1997 [45]. Sample of a weakly ordered-

minimal structure, whose theory is not weakly ordered-minimal was built by 

Macpherson-Marker-Steinhorn [39, P. 5435]. Also, in 2001, “a weakly o-minimal” 

ordered group example, which theory isn’t “weakly o-minimal” was built by V.V. 

Verbovskiy [46]. In 1998 B.Sh. Kulpeshov developed a designation of a linearly 

ordered structure weak ordered-minimality in terms of the set of realizations 1-types 

convexity in the examining of “weakly ordered-minimal structures” [47], and he 

made a complete characterization of linear orders that is weakly o-minimal, he 

established the concept of unary formula convexity rank , that is useful in 

investigating countably categorical structures. Also in 2007 and 2011 he found a 

touchstone for binarity of weakly o-minimal countably categorical structures in 

expressions of types binarity and convexity rank [48, 49]; In 2006 he proved the 

binarity and characterized the structures of convexity rank 1 that are countably 

categorical weakly o-minimal [50, 51]; Also  in 2011 and 2013 he characterized quite 

o-minimal countably categorical structures [52, 53]. There was introduced a 

designation of behavior of 𝑝-preserving to the left convex and to the right convex 2-

formulas  in “weakly o-minimal theories” by Bektur S. Baizhanov and Beibit Sh. 

Kulpeshov in 2006 [54]. Starting from 2006 B.Sh. Kulpeshov in the series of works 

has given the criterion for binarity of “weakly o-minimal” countably categorical 

theories in the point of view of “convexity rank” and binarity of every non-algebraic 

1-type, a complete characterization of countably categorical “weakly ordered-

minimal finite rank of convexity” theories, and an entire countably categorical “quite 
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o-minimal theories” characterization [49, P. 354; 51, P. 185; 52, P. 387; 55-56] 

(2006-2016). 

Since 2018 successive results in a number of work on the field of expansions 

of “weakly o-minimal structures” were published by B.Sh. Kulpeshov and S.S. 

Baizhanov [7, P. 673 ;57-58]. In [57, P. 106] B.Sh. Kulpeshov and S.S. Baizhanov 

proved that convexity rank and ℵ0-categoricity of an expansion of a “weakly o-

minimal” ℵ0-categorical theory of finite “convexity rank” is preservated in case of 

finite set of unary convex predicates expansion. In [58, P. 207] authors have 

developed a criterion for preserving both weak o-minimality and ℵ0-categoricity in 

case by an relation of equivalence expanding of 1-indiscernible weakly ordered-

minimal ℵ0-categorical structures. In [58, P. 207] they also developed a criterion for 

preservation of the ℵ0-categoricity of a weakly o-minimal 1-indiscernible expansion 

by a binary predicate on countably categorical weakly o-minimal 1-indiscernible 

structures of rank-1 convexity. In [7, P. 673] it was developed a touchstone the 

countable categoricity of a weakly ordered-minimal expansion of 1 rank of convexity 

under expansion by every single binary predicate of weakly o-minimal non 1-

indiscernible countably categorical structures is preserved. 

The concepts of a weakly quasi-o-minimal model and theory were established 

and inspected by K.Zh. Kudaibergenov [59] (2010). In 2012 and 2013 K.Zh. 

Kudaibergenov established and inspected numerous o-minimality extensions into 

“partial orders” [60, 61]. It was proceeded generalizations of the o-minimality 

concept by various ways by K.Zh. Kudaibergenov.  In 2018 K.Zh. Kudaibergenov 

established and inspected the notions of right o-minimality, multi-R-minimality, and 

their variants [62]. 

“Countably categorical weakly ordered-minimal theories” were investigated by 

H.D. Macpherson, B. Herwig, A.T. Nurtazin, G. Martin and J.K. Truss and they 

verified that every 3-indiscernible model is 𝑛-indiscernible for every single natural 𝑛. 

They built samples to such an extent that there is a 2-indiscernible model, which is 

not 3-indiscernible [63] (1999). 

In a series of papers on the field of circularly ordered structures B.Sh. 

Kulpeshov (2006-2016) [64-67] obtained a number of results. B.Sh. Kulpeshov 

fetched complete designation of the behavior of functions definable unaryly for a 

countably categorical 1-transitive structure weakly circularly minimal [64, P. 555]. 

He characterized up to binarity countably categorical “weakly circularly minimal 

structures” with a non-primitive 1-transitive automorphism group [65, P. 282]. B.Sh. 

Kulpeshov developed a touchstone that 1-type of convexity rank 1 realizations is 

indiscernible in non-1-transitive “weakly circularly minimal” countably categorical 

structures [66, P. 255]; He defined almost binarity of countably categorical non-1-

transitive “weakly circularly minimal theories” [67, P. 38]. 

There was established characterization up to binarity of “weakly circularly 

minimal structures” countably categorical with a primitive automorphism group by 

B.Sh. Kulpeshov and H.D. Macpherson [68] in 2005. High homogeneity of every 6-

homogeneous weakly circularly minimal countably categorical structure was verified 

by them. In 2015 an any weakly circularly minimal cyclically ordered group is 
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abelian was verified by V.V. Verbovskiy and B.Sh. Kulpeshov [69]. There was 

acquired a complete description of “weakly circularly minimal” non-1-transitive 

“countably categorical 𝑛-convex” (where 𝑛 > 1) almost binary of convexity rank 1 

theories by A.B. Altayeva and B.Sh. Kulpeshov [70] in 2016. 

 Type 𝑝 ∈ 𝑆𝑛(𝐴) is named definable if for every formula 𝐻(𝑥̅, 𝑦̅) there is a 

controlling formula 𝑑𝐻(𝑦̅, 𝛼̅) that 𝐻(𝑥̅, 𝑎̅)𝑓𝑟𝑜𝑚 𝑝  𝑑𝐻(𝑎̅, 𝛼̅) holds. Definability of 

every single type over every set is the key characteristic of a stable theory was 

acquired in 1978 by Shelah [71], that is, for any type 𝑝 ∈ 𝑆(𝐵) and for every formula 

𝐻(𝑥, 𝑦̅) there is a controlling formula 𝑑𝐻(𝑦̅, 𝑎̅) if and only if an elementary theory is 

stable. Extension is said to be 𝑛-conservative if the type of any 𝑛-tuple of elements of 

𝐿 over 𝐾 is definable where 𝕷 is an elementary extension of a model 𝕶. There was 

verified by L. van den Dries [72] in 1984 that any type over the field of real numbers 

is definable. And it is true that every elementary extension is conservative. In 1994 

this result was applied and enhanced to the class of “o-minimal theories” by David 

Marker and Charles I.Steinhorn. They verified that from 1-conservativity of a couple 

of models of an “o-minimal theory” it folows verifying their 𝑛-conservativity [42, P. 

185]. At a late date Anand Pillay re-proved this result. He realized that the “o-

minimal theory” is axiomatizable for conservative pairs of models [43, P. 1400]. This 

result relates to the class of “weakly o-minimal theories”, however in 2005 it was 

disseminated to a broader class by B.S. Baizhanov. He constructed non-2-

conservative pair of models of “a weakly minimal theory” that is 1-conservative [73, 

74]. In 2007 B.S. Baizhanov established the conservative pairs models of “weakly o-

minimal theories” axiomatizability condition and verified that for any model of “a 

weakly o-minimal theory”, excluding an discrete linear order theory o-minimal 

expansion by maximal and minimal elements, there exists a saturated conservative 

elementary extension [75]. 

Consider a wider class of complete theories, which is union of alpha and beta 

quadrant in Picture 4. 
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Picture 4 – NIP Theories 

Dependent theories (NIP theories). 

A problem of systematization of dependent theories appeared since the end of 

90s. Proper subclasses (“weakly o-minimal”, “o-minimal”, and “quasi-o-minimal” 
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classes of complete theories) of the dependent theories class were obtained [42, P. 

185; 43, P. 1400]. B.S. Baizhanov and V.V. Verbovskiy, Based on the methodology 

developed in stable theory, ascertained the class of ordered stable theory. In 2011 

verified that the o-stable theory class is a dependent theory’s subclass and that the 

pure linear order theory is o-superstable [76]. Definability of one-types for o-stable 

theories was explored in [77] in 2015 by B. Baizhanov and V. Verbovskiy. O-stable 

ordered groups and fields were investigated by V.V. Verbovskiy. He verified o-stable 

ordered group commutativity. Additionally, he characterized definable subsets, and 

constructed a vast amounts of non-trivial o-stable ordered groups examples [78] 

(2012). S. Shelah represented the notion of a dp-minimal theory in the frame of 

systematization of dependent theories . There was verified of o-stablity for “dp-

minimal theories” with a definable linear order by V.V. Verbovskiy [79] in 2010. 

There was proposed the notion of “a theory stable up to Δ“ by Viktor V.Verbovskiy 

[80] in 2013. He verified that NIP theories are “stable up to a certain formulas 

subset” without the independence property [80, P. 119].  

In 2013 using stability up to Δ it a characterization of NIP theories was shown 

and the concept of relative stability was introduced by V.V. Verbovskiy [80, P. 119]. 

He proceeded to investigate definability of types and relatively stable theories in [81] 

and verified that for a stable up to delta theory 𝑇 it holds that its delta part is 

definable if and only if every single one-type over a model of 𝑇 is definable. V. 

Verbovskiy proceeded to study ordered o-stable groups in 2018. He built a sample of 

an ordered group with “Morley o-degree” at most 4 of Morley o-rank 1 and showed 

that every Morley o-rank 1 ordered group with definable convex subgroups, that is 

boundedly many, is “weakly o-minimal” [82]. In 2015 and 2018 circularly ordered 

groups were investigated in the articles [69, P. 82] and [83] respectively. The Abelian 

property of weakly circularly minimal groups was first checked by Beibit Kulpeshov 

and Viktor Verbovskii. Next it was amplified up to the circularly ordered class of o-

stable groups by V. Verbovskiy.  

The first-order theories independence property was investigated by K.Zh. 

Kudaibergenov. In 2011 he disproved the existence of infinite indiscernible 

sequences of big cardinalities models of NIP theories, that is the Shelah’s hypothesis 

strong form [84]. In 2013 he refuted the Adler’s claim.  Kanat Zh. Kudaibergenov 

built a NIP theory, in which atomic formulas without independence property [85].  
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2 EXPANSIONS OF MODELS BY UNARY PREDICATES 

 

Definition 2.1 If every 𝑀 definable subset is a finite “union of convex sets” 

then  totally ordered structure (𝑀, <, . . . ) is called “weakly o-minimal” [8, P. 1382].  

 

Definition 2.2 [8, P. 1382] If 𝑀 is “a weakly o-minimal structure”, 

𝐴, 𝐵 𝑎𝑟𝑒 𝑠𝑢𝑏𝑠𝑒𝑡𝑠 𝑜𝑓 𝑀, 𝑀 is |𝐴|+-satiated, 𝑝, 𝑞 𝑓𝑟𝑜𝑚 𝑆1(𝐴) are non-algebraic 1-

types then it is said that type 𝑝 is “non weakly orthogonal” to 𝑞 (𝑝 ⊥𝑤 𝑞) if there 

exists a formula 𝐻(𝑥, 𝑦, 𝑏̅), 𝑏 ̅𝑓𝑟𝑜𝑚 𝐴 and a realisation 𝛽 𝑓𝑟𝑜𝑚 𝑝(𝑀) that there 

exists realisations 𝛼1, 𝛼2 𝑓𝑟𝑜𝑚 𝑞(𝑀) and the following holds: 𝛼1 𝑓𝑟𝑜𝑚 𝐻(𝑀, 𝛽) and 

𝛼2 𝑓𝑟𝑜𝑚 ¬𝐻(𝑀, 𝛽).  

 

Lemma 2.1 [8, P. 1391] The relation of “non-weakly orthogonality” is an 

equivalence relation on 𝑆1(𝐵) for B subset of K, where K is a “weakly o-minimal 

structure” . 

 

 Proof: Reflexivity is obvious, for any type 𝑝 ∈ 𝑆1(𝐵) it is non-weakly 

orthogonal to itself: if we consider 𝛼 ∈ 𝑝(𝐾) we can use formula 𝐻0(𝑥, 𝑧): = 𝑥 = 𝑧, 

in that case there are  𝛼1, 𝛼2 𝑓𝑟𝑜𝑚 𝑝(𝐾) such that 𝐾 ⊨ 𝐻0(𝛼1, 𝛼) and 𝐾 ⊨
¬𝐻0(𝛼2, 𝛼), where 𝛼2 is any other realisation of 𝑝(𝐾) and 𝛼1 = 𝛼. Let 𝑝, 𝑞 ∈ 𝑆1(𝐵) 

be two 1-types such that 𝑝 ⊥𝑤 𝑞. Then 𝑝(𝑥) ∪ 𝑞(𝑧) is not complete type. Thus 

𝑝(𝑥) ∪ 𝛽 such that 𝛽 ∈ 𝑞(𝐾) is not complete type. Then 𝑞 ⊥𝑤 𝑝. Let 𝑝, 𝑞, 𝑟 ∈ 𝑆1(𝐵) 

be 1-types such that 𝑝 ⊥𝑤 𝑞 and 𝑞 ⊥𝑤 𝑟 then 𝑝 ⊥𝑤 𝑟 as if we consider formula 

𝐻1(𝑥, 𝑧) and 𝐻2(𝑥, 𝑧) such that 𝛽1 ∈ 𝐻1(𝐾, 𝛼) and 𝛽2 ∈ ¬𝐻1(𝐾, 𝛼) and 𝛾1 ∈
𝐻2(𝐾, 𝛽) and 𝛾2 ∈ ¬𝐻2(𝐾, 𝛽) where without loss of generality 𝛽 can be either 𝛽1 or 

𝛽2. Let 𝛽 be equal to 𝛽1. Then if we conisder a formula 𝐻3(𝑥, 𝑧): = ∃𝑦(𝐻2(𝑥, 𝑦) ∧
𝐻1(𝑦, 𝑧)) we get 𝐾 ⊨ 𝐻3(𝛾1, 𝛼) and 𝐾 ⊨ ¬𝐻3(𝛾2, 𝛼) which is 𝑝 ⊥𝑤 𝑟   

           ∎  

In [39, P. 5435] some concepts originally were introduced. We recall them. 

Suppose following statements hold: 𝑌 𝑠𝑢𝑏𝑠𝑒𝑡 𝑜𝑓 𝐾𝑛+1 is an ∅–definable set;  

𝜋: 𝐾𝑛+1 → 𝐾𝑛 is a projection in which the last coordinate throw out; 𝑍: = 𝜋(𝑌); for 

every 𝑎̅ 𝑓𝑟𝑜𝑚 𝑍 takes place  

 𝑌𝑎̅: = {𝑧: (𝑎̅, 𝑧) 𝑓𝑟𝑜𝑚 𝑌}. 
 

Let the set 𝑌𝑎̅ bounded above, but has no supremum in 𝐾 for every 𝑎̅ 𝑓𝑟𝑜𝑚 𝑍. We 

denote "~" as a relation of ∅–definable equivalence on 𝐾𝑛, and define it by the next 

way:  

 𝑐̅~𝑑̅   𝑓𝑜𝑟  𝑒𝑎𝑐ℎ   𝑐̅, 𝑑̅ 𝑓𝑟𝑜𝑚 𝐾𝑛\𝑍,   𝑎𝑛𝑑   𝑐̅~𝑑̅  𝑖𝑓 𝑜𝑛𝑙𝑦 𝑖𝑓 s𝑢𝑝 𝑌𝑐̅ =
s𝑢𝑝 𝑌𝑑̅ ,   

𝑖𝑓   𝑐̅, 𝑑̅ 𝑓𝑟𝑜𝑚 𝑍.  Suppose that 𝑍: = 𝑍/~, and as [𝑐̅] we denote the ~-class of the 

tuple 𝑐̅ for every tuple 𝑐̅ 𝑓𝑟𝑜𝑚 𝑍. It exists a natural order ∅–definable linear on 𝐾 ∪

𝑍, which determined next way. Let 𝑐̅ 𝑓𝑟𝑜𝑚 𝑍 and 𝑎 𝑓𝑟𝑜𝑚 𝐾. Then [𝑐̅] < 𝑎 

𝑖𝑓 𝑜𝑛𝑙𝑦 𝑖𝑓 𝑤 < 𝑎 for any 𝑤 𝑓𝑟𝑜𝑚 𝑌𝑐̅. If 𝑐̅~𝑑̅, then there is some 𝑥 𝑓𝑟𝑜𝑚 𝐾 that 
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[𝑐̅] < 𝑥 < [𝑑̅] or [𝑑̅] < 𝑥 < [𝑐̅] and thus " < " induces a linear order on 𝐾 ∪ 𝑍. The 

set 𝑍 we call a sort in 𝐾 (a ∅–definable sort in 𝐾 in this exact case), where 𝐾 is a 

Dedekind structure 𝐾 completion. And 𝑍 is considered as naturally embedded in 𝐾. 

The same way, it possible to get a sort in 𝐾, taking into consederation infinum instead 

of supremum. 

 

Definition 2.3 [39, P. 5435] Function  𝑓: 𝐵 → 𝐿  is called locally decreasing 

(locally constant or locally increasing) on 𝐵 where B is infinite subset of N, L is 

subset of 𝑁 and N is structure linearly ordered if for each single 𝑏 ∈ 𝐵 there exists an 

infinite interval  𝐽 𝑓𝑟𝑜𝑚 𝐵 containing 𝑏 on which 𝑓 is strictly decreasing (constant or 

strictly increasing). 

If f is locally decreasing or locally increasing on B  then f is called locally 

monotone on a set 𝐵 𝑠𝑢𝑏𝑠𝑒𝑡 𝑜𝑓 𝑁. 

 

Take an 𝐴-definable function 𝑓 on 𝐷 ⊆ 𝑀 and an 𝐴-definable equivalence 

relation 𝐸 on 𝐷. A function 𝑓 is strictly increasing on 𝐷/𝐸 whenever for all 𝑎, 𝑏 ∈ 𝐷 

such that ¬𝐸(𝑎, 𝑏) and 𝑎 < 𝑏 the following holds 𝑓(𝑎) < 𝑓(𝑏). 

A function 𝑓 is called to be strictly decreasing on 𝐷/𝐸 whenever for all 

𝑎, 𝑏 ∈ 𝐷 such that ¬𝐸(𝑎, 𝑏) and 𝑎 < 𝑏 the next takes place 𝑓(𝑏) < 𝑓(𝑎).  

 

Definition 2.4 [47, P. 1511] 𝑅𝐶(𝜓(𝑦)) is designation of the convexity rank of 

𝜓(𝑦) for 𝑁-definable formula 𝜓(𝑦) with one free variable where N is a sufficiently 

saturated model of 𝑇, 𝑇 is “a weakly o-minimal theory” 𝑁. Convexity rank of 𝜓(𝑦) is 

defined by following way: 

1. For infinite 𝜓(𝑁): 𝑅𝐶(𝜓(𝑦)) ≥ 1 

2. If ∃ an equivalence relation 𝐸(𝑦, 𝑧) parametrically definable and an infinite 

family 𝑎𝑖 , 𝑖 ∈ 𝜔 so that   

      - 𝑁 ⊨ ¬𝐸(𝑎𝑖 , 𝑎𝑗) for all 𝑖, 𝑗 ∈ 𝜔 and 𝑖 ≠ 𝑗,  

      - 𝑅𝐶(𝐸(𝑦, 𝑎𝑖)) ≥ 𝛽 and 𝐸(𝑁, 𝑎𝑖) is a convex subset of 𝜓(𝑁) for any 

𝑖 from 𝜔  

then 𝑅𝐶(𝜓(𝑦)) ≥ 𝛽 + 1 

3. If 𝑅𝐶(𝜓(𝑦)) ≥ 𝛽 for all 𝛽 ≤ 𝛿 with a limit ordinal 𝛿  

then 𝑅𝐶(𝜓(𝑦)) ≥ 𝛿 

𝑅𝐶(𝜓(𝑦)) is called determinable if  ∃ 𝛽 such that 𝑅𝐶(𝜓(𝑦)) = 𝛽. 
Otherwise 𝑅𝐶(𝜓(𝑦)) = ∞, i.e. for any 𝛽 𝑅𝐶(𝜓(𝑦)) ≥ 𝛽. 

Denote by 𝑅𝐶(𝑞) the convexity rank of a 1-type 𝑞. 𝑅𝐶(𝑞)is the minimal 

convexity rank of formulas from type 𝑞. 

 

Proposition 2.1 [52, P. 387] If  domain of function includes 𝑝(𝑀) into an 𝐴-

definable sort where 𝑀 is a “weakly o-minimal structure”, 𝐴 𝑖𝑠 𝑠𝑢𝑏𝑠𝑒𝑡 𝑜𝑓 𝑀, 

𝑝 𝑓𝑟𝑜𝑚 𝑆1(𝐴) then the function is either locally constant or locally monotone on 

𝑝(𝑀).  
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Theorem 2.1 [56, P. 606] Let 𝑀 be a model of ℵ0 − categorical theory 𝑇 

which is a weakly o-minimal with finite convexity rank, with |𝑀| = 𝜔. The following 

holds: 

(i) There exists a finite set 𝐶 = {𝑐0, . . . , 𝑐𝑛} ⊆ 𝑀 (or 𝑀 ∪ {−∞, +∞} when 𝑀 

doesn’t have a last or a first element) which consists of all ∅-definable elements of 𝑀 

except possibly −∞ and +∞ such that 𝑀 ⊨ 𝑐𝑖 < 𝑐𝑗 for any 𝑛 ≥ 𝑗 > 𝑖 and for any 

𝑖 ∈ {1, . . . , 𝑛} either there is no element from 𝑀 between 𝑐𝑖−1 and 𝑐𝑖 or there is a 

dense linear order without endpoints, i.e. 𝑀 ⊨ ¬∃𝑥𝑐𝑖−1 < 𝑥 < 𝑐𝑖 or 𝐼𝑖 = {𝑥 ∈
𝑀: 𝑀 ⊨ 𝑐𝑖−1 < 𝑥 < 𝑐𝑖} is a dense linear order which doesn’t have endpoints, 

moreover 𝐼𝑖 = ⋃  
𝑘𝑖
𝑠=1 𝑝𝑠

𝑖 (𝑀) for some 𝑘𝑖 ∈ 𝜔 and 𝑝1
𝑖 , . . . , 𝑝𝑘𝑖

𝑖 ∈ 𝑆1(∅). 

(ii) Every non-algebraic type 𝑝 ∈ 𝑆1(∅) has some convexity rank 𝑛𝑝 ≥ 1, 

where 𝑛𝑝 is integer, 𝑅𝐶(𝑝) = 𝑛𝑝. This means there exists an  empty definable 

equivalence relations: 𝐸1
𝑝

(𝑥, 𝑦), 𝐸2
𝑝

(𝑥, 𝑦), . .., 𝐸𝑛𝑝−1
𝑝

(𝑥, 𝑦) such that   

    - 𝑝(𝑀) is partitioned by 𝐸𝑛𝑝−1
𝑝

 into infinitely many open and convex 𝐸𝑛𝑝−1
𝑝

-

classes. On these classes the induced order is a dense linear order which doesn’t have 

endpoints.  

    - for every 𝑖 𝑓𝑟𝑜𝑚 {1, . . . , 𝑛𝑝 − 2} every 𝐸𝑖+1
𝑝

-class is partitioned by 𝐸𝑖
𝑝
 into 

infinitely many open and convex 𝐸𝑖
𝑝
-classes. The 𝐸𝑖

𝑝
-subclasses of every 𝐸𝑖+1

𝑝
-class 

are linearly ordered dense which doesn’t have endpoints. 

 

(iii) For all nonorthogonal, nonalgebraic types 𝑝, 𝑞 ∈ 𝑆1(∅) with 𝑝 ⊥𝑤 𝑞 the 

following holds: 

(1) if the definable closure of some realization of 𝑝 contains some realization 

of 𝑞, that is 𝑑𝑐𝑙({𝛼}) ∩ 𝑞(𝑀) ≠ ∅ for some 𝛼 ∈ 𝑝(𝑀) then there exists a unique ∅-

definable function 𝑓: 𝑝(𝑀) → 𝑞(𝑀) which is: locally monotone bijection on 𝑝(𝑀) 

whenever 𝑅𝐶(𝑝) = 𝑅𝐶(𝑞), locally constant on 𝑝(𝑀) whenever 𝑅𝐶(𝑝) > 𝑅𝐶(𝑞) that 

is on each 𝐸𝑛𝑝−𝑛𝑞

𝑝
-class 𝑓 is constant and on 𝑝(𝑀)/𝐸𝑛𝑝−𝑛𝑞

𝑝
 f is locally monotone. 

(2) if the definable closure of any realization of 𝑝 doesn’t contain any 

realization of 𝑞, that is 𝑑𝑐𝑙({𝛼}) ∩ 𝑞(𝑀) ≠ ∅ for arbitrary 𝛼 ∈ 𝑝(𝑀) then whenever 

𝑅𝐶(𝑝) = 𝑅𝐶(𝑞) there exists exactly (2𝑛𝑝 − 1) (𝑝, 𝑞)-splitting formulas 𝐻1(𝑥, 𝑦), . .., 

𝐻2𝑛𝑝−1(𝑥, 𝑦) such that 𝐻1(𝛼, 𝑀) ⊂. . . ⊂ 𝐻2𝑛𝑝−1(𝛼, 𝑀) for every 𝛼 ∈ 𝑝(𝑀). The 

function 𝑓(𝑥): = s𝑢𝑝 𝐻𝑛𝑝
(𝑥, 𝑀) is locally monotone on 𝑝(𝑀)  

 

𝐻𝑖(𝑥, 𝑦) ≡ ∀𝑡(𝐸𝑛𝑝−𝑖
𝑝

(𝑥, 𝑡) → 𝐻𝑛𝑝
(𝑡, 𝑦)),    1 ≤ 𝑖 ≤ 𝑛𝑝 − 1 

 

𝐻𝑗(𝑥, 𝑦) ≡ ∃𝑡(𝐸𝑗−𝑛𝑝

𝑝
(𝑥, 𝑡) ∧ 𝐻𝑛𝑝

(𝑡, 𝑦)),    𝑛𝑝 + 1 ≤ 𝑗 ≤ 2𝑛𝑝 − 1 

 

Whenever 𝑅𝐶(𝑝) > 𝑅𝐶(𝑞) there exist exactly (2𝑛𝑞 − 1) (𝑝, 𝑞)-splitting formulas 

𝐻1(𝑥, 𝑦), . .., 𝐻2𝑛𝑞−1(𝑥, 𝑦) such that 𝐻1(𝛼, 𝑀) ⊂. . . ⊂ 𝐻2𝑛𝑞−1(𝛼, 𝑀) for every 

𝛼 ∈ 𝑝(𝑀). The function 𝑓(𝑥): = s𝑢𝑝 𝐻𝑛𝑞
(𝑥, 𝑀) is locally monotone on 𝑝(𝑀)/
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𝐸𝑛𝑝−𝑛𝑞

𝑝
 and constant on each 𝐸𝑛𝑝−𝑛𝑞

𝑝
  

 

𝐻𝑖(𝑥, 𝑦) ≡ 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑡(𝐸𝑛𝑝−𝑖
𝑝

(𝑥, 𝑡) → 𝐻𝑛𝑞
(𝑡, 𝑦)),   𝑛𝑞 − 1 ≥  𝑖 ≥ 1 

 

𝐻𝑗(𝑥, 𝑦) ≡ 𝑒𝑥𝑖𝑠𝑡 𝑡(𝐸𝑛𝑝−2𝑛𝑞+𝑗
𝑝

(𝑥, 𝑡) ∧ 𝐻𝑛𝑞
(𝑡, 𝑦)),    𝑛𝑞 + 1 ≤ 𝑗 ≤ 2𝑛𝑞 − 1 

 

hence, 𝑇 admits quantifier elimination to the language  

 

{=, <} ∪ {𝑐𝑖: 𝑖 ≤ 𝑛} ∪ {𝑈𝑠: 𝑠 ≤ 𝑟 = ∑  

𝑛

𝑗=1

𝑘𝑗} ∪ 

 

{𝑓𝑖,𝑗: 𝑑𝑐𝑙({𝛼}) ∩ 𝑝𝑗(𝑀) ≠ ∅   𝑓𝑜𝑟  𝑠𝑜𝑚𝑒   𝛼 ∈ 𝑝𝑖(𝑀), 𝑅𝐶(𝑝𝑖) ≥ 𝑅𝐶(𝑝𝑗)} ∪ 

 

{𝐻𝑖,𝑗(𝑥, 𝑦): 𝑝𝑖 ⊥ 𝑝𝑗 , 𝑑𝑐𝑙({𝛼}) ∩ 𝑝𝑗(𝑀) = ∅   𝑓𝑜𝑟  𝑎𝑙𝑙   𝛼 ∈ 𝑝𝑖(𝑀), 𝑅𝐶(𝑝𝑖) ≥ 𝑅𝐶(𝑝𝑗)} 

 

 where for each 𝑠 ≤ 𝑟, the formula 𝑈𝑠(𝑥) isolates the type 𝑝𝑠. Furthermore there is a 

weakly o-minimal 𝜔-categorical theory which has finite convexity rank 

corresponding, as above for every ordering with elements that can be distincted as in 

(i)-(iii). 

  

Definition 2.5  For a weakly o-minimal structure M, to extent that 𝐴, 𝐵 ⊆ 𝑀. 

Assume that that types 𝑝, 𝑞 ∈ 𝑆1(𝐴) are non-algebraic and 𝑀 is |𝐴|+-saturated. In 

case of existance of bijection 𝑓: 𝑝(𝑀) → 𝑞(𝑀), where f  is a function over A, we call 

type 𝑝 is not  quite orthogonal to type 𝑞 (𝑝 ⊥𝑞 𝑞). In the case of coincidence of 

concepts of weak and quite orthogonality of 1-types we are going to say that an 

weakly o-minimal theory is quite o-minimal.  

 

As soons as in the case of o-minimal theory for every single set A and every 

single two types over A there is a bijection that is A-definable and strictly monotone 

between sets of realisations of such types it is clear that any such theory it is also 

quite o-minimal [86]. 

 

Example 2.1 [39, P. 5441] Consider a structure 𝑀 = 〈𝑀; <, 𝑃1
1, 𝑃2

1, 𝑓1〉 that 

has a property of linear order and the universe 𝑀 consits of unary predicates 𝑃1 and 

𝑃2 interpretations more precisely their disjoint union, with 𝑃1(𝑀) < 𝑃2(𝑀). We 

identify the 𝑃2 interpretation with the set of rational numbers ℚ, that is ordered as 

usual, and 𝑃1 interpretation is ℚ × ℚ, that is ordered lexicographically. The symbol f 

defines a partial unary function to extent that D𝑜𝑚 (𝑓) = 𝑃1(𝑀) and R𝑎𝑛𝑔𝑒 (𝑓) =
𝑃2(𝑀) interpreted, and the following equality holds 𝑓((𝑛, 𝑚)) = 𝑛 for all (𝑛, 𝑚) ∈
ℚ × ℚ.  

 

It can be verified that 𝑇ℎ(𝑀) has a weakly o-minimal theory. Consider the 
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following types 𝑝(𝑥): = {𝑃1}, 𝑞(𝑥): = {𝑃2}. It is clear that types 𝑝, 𝑞 ∈ 𝑆1(∅) and 

𝑝 ⊥𝑞 𝑞 with 𝑝 ⊥𝑤 𝑞, so we can conclude that 𝑇ℎ(𝑀) is not quite o-minimal. Also 

note that 𝑅𝐶(𝑝) = 2, 𝑅𝐶(𝑞) = 1. 

 

Example 2.2  Consider a structure Ɲ = 〈𝑁, <, 𝐻1
1, 𝐻2

1, 𝐸1
2, 𝐸2

2, 𝑓1〉 that is 

linearly ordered and to extent that Ɲ is the ditinct union of 𝑃1 and 𝑃2 unary predicates 

realisations, to extent that realisations ordered as follows 𝐻1(Ɲ) < 𝐻2(Ɲ). Thus 

realisations of predicates 𝐻1 and 𝐻2 is similar to the ℚ × ℚ, ordered 

lexicographically. Two binary predicates 𝐸1(𝑡, 𝑧) and 𝐸2(𝑡, 𝑧) are interpreted as 

equivalence relations on 𝐻1(Ɲ) and 𝐻2(Ɲ) respectively. Relations of quvalence for 

every 𝑡 = (𝑙1, 𝑠1), 𝑧 = (𝑙2, 𝑠2) 𝑓𝑟𝑜𝑚 ℚ × ℚ, are defined by next way:  

 

 For 𝐸𝑖(𝑡, 𝑧)  𝑛𝑒𝑐𝑒𝑠𝑠𝑎𝑟𝑦 𝑎𝑛𝑑 𝑠𝑢𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑖𝑠 𝑙1 = 𝑙2,   𝑤ℎ𝑒𝑟𝑒   𝑖 = 1,2. 
 

A symbol 𝑔 is interpreted by a partial unary function with D𝑜𝑚 (𝑔) = 𝐻1(Ɲ) and 

R𝑎𝑛𝑔𝑒 (𝑔) = 𝐻2(Ɲ). It is determined as follows: 𝑔((𝑙, 𝑠)) = (𝑙, −𝑠) for every 
(𝑙, 𝑠) 𝑓𝑟𝑜𝑚 ℚ × ℚ. 

It can be understood that 𝐻1(Ɲ) and 𝐻2(Ɲ) are partitioned into an infinite 

number of infinite convex classes by ∅-definable equivalence relations 𝐸1(𝑡, 𝑧) and 

𝐸2(𝑡, 𝑧) respectively. We are saying that function 𝑔 is strictly decreasing on any 

𝐸1(𝑏, Ɲ), where 𝑏 𝑓𝑟𝑜𝑚 (Ɲ), and on 𝐻1(Ɲ)/𝐸1 function 𝑔 is strictly increasing. It is 

easy to prove, that Tℎ(Ɲ) is “a quite o-minimal theory”. A convex set defined by set 

𝐸1(𝑏, 𝑁) is not an interval in Ɲ. For this reason the theory Tℎ(Ɲ) is not o-minimal. 

Note also that 𝑅𝐶(𝐻1(𝑡)) = 𝑅𝐶(𝐻2(𝑡)) = 2.  

 

 Quite o-minimal theories are a subclass of weakly o-minimal theories which 

has many o-minimal theories properties. In [53, P. 45] it were described examples of 

quite o-minimal countably categorical theories. Their binarity follows from this 

description (o-minimal countably categorical theories has a similar result). 

 

Theorem 2.2   Suppose 𝑇 is a countably categorical theory quite o-minimal, 

and 𝑁 ⊨ 𝑇 where |𝑁| = ℵ0. Thereat the following holds [52, P. 390 ; 53, P. 48]:  

(i) there is a finite set 𝐷 = {𝑑0, … , 𝑑𝑛} 𝑖𝑠 𝑠𝑢𝑏𝑠𝑒𝑡 𝑜𝑓 𝑁(𝑁 ∪ {−∞, +∞}, 
whensoever 𝑁 hasn’t first or last element), which consists of all empty elements 

definable in 𝑁 (with eventual exceptions for −∞, +∞), such that 𝑁 ⊨ 𝑑𝑖 < 𝑑𝑗 for 

any 𝑖 < 𝑗 ≤ 𝑛 and for all 𝑗 𝑓𝑟𝑜𝑚 {1, … , 𝑛} either 𝑁 ⊨ ¬(𝑒𝑥𝑖𝑠𝑡𝑠 𝑥)𝑑𝑗−1 < 𝑥 < 𝑑𝑗 or 

𝐼𝑗 = {  𝑥 𝑓𝑟𝑜𝑚 𝑁: 𝑁 ⊨ 𝑑𝑗−1 < 𝑥 < 𝑑𝑗   } is “a dense linear order without endpoints” 

and there exists 𝑘𝑗  𝑓𝑟𝑜𝑚 𝜔 and 𝑞1
𝑗
, … , 𝑞𝑘𝑗

𝑗
 𝑓𝑟𝑜𝑚 𝑆1(∅) that 𝐼𝑗 = ⋃  

𝑘𝑗

𝑠=1 𝑞𝑠
𝑗
(𝑁); 

 

(ii) let 𝑞 𝑓𝑟𝑜𝑚 𝑆1(∅) is any non algebraic one-types, then there exists 

𝑛𝑞  𝑓𝑟𝑜𝑚 𝜔 such that 𝑅𝐶(𝑞) = 𝑛𝑞, so that there is empty definable equivalence 

relations 𝐸1
𝑞

(𝑥, 𝑦), 𝐸2
𝑞

(𝑥, 𝑦), …, 𝐸𝑛𝑞−1
𝑞

(𝑥, 𝑦) that the following holds  



29 
 

- an induced order on the classes is “a dense linear order without endpoints” 

because  𝐸𝑛𝑞−1
𝑞

 partitions 𝑞(𝑁) into an infinite number of convex and open classes 

  𝐸𝑛𝑞−1
𝑞

  

- for any 𝑖 𝑓𝑟𝑜𝑚 {1, … , 𝑛𝑞 − 2} 𝐸𝑖
𝑞
 splits up every 𝐸𝑖+1

𝑞
-class into an infinite 

number of convex and open classes 𝐸𝑖
𝑞
, so that the set of subclasses 𝐸𝑖

𝑞
 of every class 

𝐸𝑖+1
𝑞

 is “densely linearly ordered without endpoints” 

 

 (iii) a relation of equivalence 𝜀 ⊆ ({𝑠: 1 ≤ 𝑠 ≤ 𝑘})2 exists, such that any non-

algebraic 1-types over empty set arbitrary enumeration is {𝑞𝑠  |  𝑠 ≤ 𝑘 < 𝜔}, and for 

each (𝑖, 𝑗) ∈ 𝜀 there is a unique locally monotone empty definable bijection 

𝑓𝑖,𝑗: 𝑞𝑖(𝑁) → 𝑞𝑗(𝑁) that 𝑅𝐶(𝑞𝑖) = 𝑅𝐶(𝑞𝑗), 𝑓𝑖,𝑖 = 𝑖𝑑𝑝𝑖(𝑀) and 𝑓𝑗,𝑙 ∘ 𝑓𝑖,𝑗 = 𝑓𝑖,𝑙 for all 

(𝑖, 𝑗), (𝑗, 𝑙) ∈ 𝜀 to such an extent that 𝑇 accepts quantifier exception up to the 

language {=, <} ⋃   {𝑑𝑖: 𝑖 ≤ 𝑛} ⋃   {𝑈𝑠(𝑥): 𝑠 ≤ 𝑘} ⋃   {𝐸𝑙
𝑞𝑠(𝑥, 𝑦): 𝑠 ≤ 𝑘, 𝑙 ≤

𝑛𝑞𝑠
} ⋃   {𝑓𝑖,𝑗: (𝑖, 𝑗) ∈ 𝜀}, such that 𝑈𝑠(𝑥) insulates the 𝑞𝑠 type for each 𝑠 ≤ 𝑘.  

Moreover, any ordering of chosen elements as mentioned in (i)-(ii) and any 

appropriate relation of equivalence 𝜀 as mentioned in (iii) meets to a quite o-minimal 

countably categorical theory as set out above.  

 

Definition 2.6 [87] Suppose 𝑁 is a weakly o-minimal structure, 

𝐵 𝑖𝑠 𝑠𝑢𝑏𝑠𝑒𝑡 𝑜𝑓 𝑁, 𝑁 is |𝐵|+-satiated, 𝑞 𝑓𝑟𝑜𝑚 𝑆1(𝐵) is non-algebraic. 

(1) It is called that an 𝐵-formula 𝐹(𝑥, 𝑦) is 𝑞-preserving (or 𝑞-stable) if there 

exists the type 𝛽, 𝛾1, 𝛾2 𝑓𝑟𝑜𝑚 𝑞(𝑁) realisations such that  

 

[𝐹(𝑁, 𝛽)\{𝛽}] ∩ 𝑞(𝑁) ≠ ∅ 

 

and 𝛾1 < 𝐹(𝑁, 𝛽) ∩ 𝑞(𝑁) < 𝛾2. 

(2) It is called that a formula 𝐹(𝑥, 𝑦) is convex to the right (left) if there is 𝑞-

stable and there exists 𝛽 𝑓𝑟𝑜𝑚 𝑝(𝑁) that 𝐹(𝑁, 𝛽) ∩ 𝑞(𝑁) is convex and the 𝛽 is in 

𝐹(𝑁, 𝛽) and it is the left (right) endpoint of 𝐹(𝑁, 𝛽) ∩ 𝑞(𝑁).  

 

Definition 2.7 [54, P. 31] A formula 𝐹(𝑡, 𝑧) is called to be is equivalence-

generating  if there is 𝑞-preserving convex to the left (right) and for each realisations 

𝛽, 𝛾 𝑓𝑟𝑜𝑚 𝑞(𝑁) such that 𝑁 ⊨ 𝐹(𝛾, 𝛽), we have the following:  

 

𝑁 ⊨ for any 𝑡(𝑡 ≤ 𝛾 → (𝐹(𝑡, 𝛽) ↔ 𝐹(𝑡, 𝛾))) 
 

( 𝑟𝑒𝑠𝑝.   𝑁 ⊨ for any 𝑡(𝑡 ≥ 𝛾 → (𝐹(𝑡, 𝛽) ↔ 𝐹(𝑡, 𝛾)))) 
 

Lemma 2.2 [54, P. 33] Suppose 𝑁 is a weakly o-minimal structure, 

𝐵 𝑖𝑠 𝑠𝑢𝑏𝑠𝑒𝑡 𝑜𝑓 𝑁, 𝑁 is |𝐵|+-satiated, non-algebraic type 𝑞 𝑓𝑟𝑜𝑚 𝑆1(𝐵), 𝐹(𝑡, 𝑦) is a 

𝑞-preserving convex to the right (left) formula. If 𝐹(𝑡, 𝑧) is not equivalence-

generating there exists realisations 𝛽, 𝛾 𝑓𝑟𝑜𝑚 𝑞(𝑁) such that  
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 𝑁 ⊨ 𝐹(𝛾, 𝛽) ∧ 𝑒𝑥𝑖𝑠𝑡𝑠 𝑡(¬𝐹(𝑡, 𝛽) ∧ 𝐹(𝑡, 𝛾)) 
 

Lemma 2.3 [54, P. 34] Suppose 𝑁 is “a weakly o-minimal structure”, 

𝐵 𝑖𝑠 𝑠𝑢𝑏𝑠𝑒𝑡 𝑜𝑓 𝑁, 𝑁 is |𝐵|+-saturated, non-algebraic type 𝑞 ∈ 𝑆1(𝐵), convex to the 

right (left) 𝑞-preserving formula 𝐹(𝑡, 𝑧). In this case a formula 𝐹′(𝑡, 𝑧): =
𝑒𝑥𝑖𝑠𝑡𝑠 𝑥(𝐹(𝑥, 𝑧) ∧ 𝐹(𝑡, 𝑥)) is also convex to the right (left) 𝑞-preserving.  

 

Lemma 2.4 [54, P. 36] Suppose 𝑁 is a “weakly o-minimal structure”, 

𝐵 𝑖𝑠 𝑠𝑢𝑏𝑠𝑒𝑡 𝑜𝑓 𝑁, 𝑁 is |𝐵|+-saturated, 𝐹(𝑡, 𝑧) is a equivalence-generating 

formula 𝑞-preserving convex to the right (left). Then: 

1) 𝐺(𝑡, 𝑧): = 𝐹(𝑧, 𝑡) is a formula 𝑞-preserving convex to the left (right) and 

𝐺(𝑡, 𝑧) is also equivalence-generating. 

2) 𝐸(𝑡, 𝑧): = 𝐹(𝑡, 𝑧) ∨ 𝐹(𝑧, 𝑡) is a relation of equivalence that splits up 𝑞(𝑁) 

into infinitely many infinite convex classes.  

 

Proposition 2.2 [54, P. 37] Suppose 𝑇 is a countably categorical “weakly o-

minimal theory”, N is a model of theory T, 𝐵 𝑖𝑠 𝑠𝑢𝑏𝑠𝑒𝑡 𝑜𝑓 𝑁, non-algebraic one-type 

𝑞 𝑓𝑟𝑜𝑚 𝑆1(𝐵). Then any convex formula 𝑞-preserving to the right (left) is 

equivalence-generating.  

 

2.1 Unary expansions 

 

Suppose 𝑀 is a model of “weakly o-minimal theory”. For some formula 𝜑(𝑥) 

denote the set {𝑏 ∈ 𝑀|∀𝑥(𝜑(𝑥) → 𝑏 < 𝑥)} as 𝜑(𝑀)−. Denote 𝜑(𝑀)+ the set 

{𝑏 ∈ 𝑀|∀𝑥(𝜑(𝑥) → 𝑥 < 𝑏)}. 

Suppose 𝑀 is a model of “weakly o-minimal theory”, 𝐴 ⊂ 𝑀, 𝑝(𝑥) ∈ 𝑆1(𝐴). 

Denote the set {𝑏 ∈ 𝑀|∀𝑥(𝑝(𝑥) → 𝑏 < 𝑥)} as 𝑝(𝑀)−. Denote 𝑝(𝑀)+ the set 

{𝑏 ∈ 𝑀|∀𝑥(𝑝(𝑥) → 𝑥 < 𝑏)}. 

For any weakly o-minimal countably categorical structure 𝑀: = 〈𝑀, Σ〉 any 

expansion by a new convex unary predicate 𝑈(𝑥) preserves weak o-minimality, that 

is 𝑀′: = 〈𝑀, Σ, 𝑈1〉 has 𝑇′: = 𝑇ℎ(𝑀′) “weakly o-minimal theory” [8, P. 1382]. It is 

worth noting that an expansion using an unary predicate 𝑈(𝑥) with interpretation 

which is a finite quantity of convex sets in 𝑀, say 𝑚, is equivalent to the expansion 

by a finite number of unary convex predicates 𝑈𝑖(𝑥), for 1 ≤ 𝑖 ≤ 𝑚, because all 

these convex sets are ∅-definable. As 𝑀 is countably categorical there exists only a 

finite number of non-algebraic 1-types over ∅. Call them 𝑝1, 𝑝2, . . . , 𝑝𝑠. Without loss 

of generality assume:  

 

𝑝1(𝑀) < 𝑝2(𝑀) <. . . < 𝑝𝑠(𝑀) 

 

Let 𝑈(𝑀) lie across 𝑝1, 𝑝2, 𝑝3, 𝑝2(𝑀) ⊂ 𝑈(𝑀), so that there exists 𝛼1, 𝛼2 ∈ 𝑝1(𝑀) 

and 𝛽1, 𝛽2 ∈ 𝑝3(𝑀) such that  
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𝑀′ ⊨ 𝛼1 < 𝛼2 ∧ ¬𝑈(𝛼1) ∧ 𝑈(𝛼2) ∧ 𝛽1 < 𝛽2 ∧ 𝑈(𝛽1) ∧ ¬𝑈(𝛽2) 

 

Then the introduction of the unary predicate 𝑈(𝑥) is equivalent to the introduction of 

two convex unary predicates 𝑈1(𝑥): = 𝑝1(𝑥) ∧ ¬𝑈(𝑥) and 𝑈2(𝑥): = 𝑝3(𝑥) ∧ 𝑈(𝑥). 

Hence we will consider a unary predicate 𝑈(𝑥) such that 𝑈(𝑀) ⊂ 𝑝(𝑀) and 

𝑈(𝑀)− = 𝑝(𝑀)− for some non-algebraic one-type 𝑝 𝑓𝑟𝑜𝑚 𝑆1(∅), it means that there 

is 𝛼 𝑓𝑟𝑜𝑚 𝑝(𝑀) that 𝛼 > 𝑈(𝑀). 

If the right boundary of 𝑈(𝑥) is determined by some 𝑏 ∈ 𝑀, then this 

expansion is definable, non essential, and equivalent to extension of 𝑀 by one 

constant. Obviously all the properties of initial model is preserved in this case and 𝑇′ 
keeps being countably categorical. Therefore further we consider the case, that the 

right boundary of 𝑈(𝑥) doesn’t lie in 𝑀 and hence determine irrational cut in 𝑀. 

Suppose an 𝐸(𝑥, 𝑦) is a relation of equivalence definable over empty set, that 

splits out 𝑝(𝑀) into infinite number of classes eash of them is infinite and convex. A 

predicate 𝑈(𝑥) is irrational with respect to the 𝐸-classes whenever the following 

holds: 

(1) for each 𝛼 𝑓𝑟𝑜𝑚 𝑝(𝑀) for which 𝑈(𝛼) takes place, there exists a 

realisation 𝛽 𝑓𝑟𝑜𝑚 𝑝(𝑀) where 

  

𝑀′ ⊨ 𝛼 < 𝛽 ∧ ¬𝐸(𝛼, 𝛽) ∧ 𝑈(𝛽) 

 

 (2) for each 𝛼 𝑓𝑟𝑜𝑚 𝑝(𝑀) for which ¬𝑈(𝛼) takes place, there exists a realisation 

𝛽 𝑓𝑟𝑜𝑚 𝑝(𝑀) where 

 

𝑀′ ⊨ 𝛽 < 𝛼 ∧ ¬𝐸(𝛼, 𝛽) ∧ ¬𝑈(𝛽) 

 

Let’s see the next sample.  

 

Example 2.3  Consider a linearly ordered structure 𝑀: = 〈ℚ, <, 𝑈1〉, where 

𝑈(𝑥): = {𝑏 ∈ 𝑄: 𝑏 < √2} is a unary convex predicate in 𝑀. Replace each element 

𝑎 ∈ 𝑀 by a copy of the set of rationals ℚ and define 𝐸(𝑥, 𝑦) new binary relation by 

next way: for any 𝑎1 = (𝑚1, 𝑛1), 𝑎2 = (𝑚2, 𝑛2) ∈ ℚ × ℚ they are in the similar 

equivalence class if their first coordinates match, that is  

 

𝐸(𝑎1, 𝑎2) ⇔ 𝑚1 = 𝑚2 

 

We obtain the structure 𝑀′: = 〈ℚ × ℚ, <, 𝑈1, 𝐸2〉, which is splited out into infinite 

number of convex classes by the equivalence relation 𝐸(𝑥, 𝑦), so that the order 

induced on the 𝐸-classes is a dense linear order which doesn’t include endpoints. 

𝑀′ is a weakly o-minimal countably categorical structure. The predicate 𝑈(𝑥) 

is irrational with respect to the 𝐸-classes.  

 

𝑈(𝑥) is called quasirational to the right (left) with respect to the 𝐸-classes ⇔ 
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there exists 𝛼 𝑓𝑟𝑜𝑚 𝑝(𝑀) and there is an 𝐸-class 𝐸(𝛼, 𝑀) that 

 

𝑈(𝑀)+ = 𝐸(𝛼, 𝑀)+    (𝑈(𝑀) = 𝑝(𝑀) ∩ 𝐸(𝛼, 𝑀)−) 

 

Lemma 2.5 Let type 𝑝 ∈ 𝑆1(∅) be non-algebraic, and relation of equivalence 

𝐸(𝑥, 𝑦) definable over empty set splits out 𝑝(𝑀) into infinite number of classes which 

are convex and infinite. In the case when with respect to the 𝐸-classes 𝑈(𝑥) is 

quasirational to the right (left) there is an empty definable quasirational to the left 

(right) convex formula 𝑈′(𝑥)  with respect to the 𝐸-classes.  

 

 Proof: It is possible to expect that 𝑈(𝑥) is quasirational to right point with 

respect to the 𝐸-classes, as proof for the case of quasirational to the left is similar. 

Hence there exists 𝛼 ∈ 𝑝(𝑀) with 𝑈(𝑀)+ = 𝐸(𝛼, 𝑀)+. Consider the formula  

 

𝑅(𝑥): = ∃𝑧(¬𝐸(𝑥, 𝑧) ∧ 𝑥 < 𝑧 ∧ 𝑈(𝑥) ∧ ¬𝑈(𝑧) ∧ ∀𝑡1(𝐸(𝑥, 𝑡1) → 𝑈(𝑡1)) ∧ 

 ∧ ∀𝑡2(𝑥 < 𝑡2 < 𝑧 ∧ ¬𝐸(𝑥, 𝑡2) → ¬𝑈(𝑡2))) 

 

So 𝑈′(𝑥): = 𝑈(𝑥) ∧ ¬𝑅(𝑥) is quasirational to the right (left) with respect to the 𝐸-

classes empty definable convex formula. 

 

Theorem 2.3 [58, P. 207] Suppose for some 𝑘 < 𝜔 𝑀 is a model of a 

countably categorical “weakly o-minimal theory” of convexity 𝑘-rank, and 𝑀′ is the 

expansion of 𝑀 by a finite family {𝑈𝑖: 𝑖 < 𝑚} of convex unary predicates , where 

𝑚 < 𝜔. Then the theory 𝑇ℎ(𝑀′) also is a countably categorical “weakly o-minimal 

theory” of convexity rank 𝑘.  

In order to prove Theorem 2.3 we will require several lemmas. We assume for 

now that 𝑇 is a weakly o-minimal countably categorical theory which has convexity 

of finite rank, and 𝑀 ⊨ 𝑇. 

 

Lemma 2.6  Given non-algebraic type 𝑝 ∈ 𝑆1(∅) with 𝑅𝐶(𝑝) = 𝑛, the 

predicate 𝑈(𝑥) partitions a number of type 𝑝 realizations into 𝑠 ∅-definable 1-

indiscernible convex sets, where 2 ≤ 𝑠 ≤ 2𝑛.  

 

 Proof: Since 𝑇 is a countably categorical theory, the type 𝑝 is isolated, hence 

there exists an ∅-definable isolating formula 𝑃(𝑥). As 𝑅𝐶(𝑝) = 𝑛, there is relations 

of equivalence definable by parametrs 𝐸1(𝑡, 𝑧), 𝐸2(𝑡, 𝑧), . . . , 𝐸𝑛−1(𝑡, 𝑧) and the 

relations split out 𝑝(𝑀) into infinite number of classes which are infinite and convex 

such that holds 

 𝐸𝑛−1(𝛼, 𝑀)  ⊃ ⋯ ⊃ 𝐸2(𝛼, 𝑀) ⊃ 𝐸1(𝛼, 𝑀) 
 

for some 𝛼 𝑓𝑟𝑜𝑚 𝑝(𝑀). 

Relation of  equivalence 𝐸𝑛−1(𝑡, 𝑧) splits out 𝑝(𝑀) into ordered by type ℚ 

infinite number classes which are infinite and convex. Every class 𝐸𝑖+1is splited out 

into infinite number of 𝐸𝑖-subclasses which are convex, ordered by type ℚ, (1 ≤ 𝑖 ≤
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𝑛 − 2). Each 𝐸1-class is 2-indiscernible over ∅. Therefore it is sufficient to study the 

mutual location of 𝐸𝑖-classes and the predicate 𝑈(𝑥), where 1 ≤ 𝑖 ≤ 𝑛 − 1. 

Consider the formulas:  

 

𝐸0(𝑥, 𝑦): = 𝑥 = 𝑦,    𝐸𝑛(𝑥, 𝑦): = 𝑃(𝑥) ∧ 𝑃(𝑦) 

 

𝜃𝑖: = ∃𝑧1, 𝑧2: (𝐸𝑖(𝑦, 𝑧1) ∧ 𝐸𝑖(𝑧1, 𝑧2) ∧ 𝑈(𝑧1) ∧ ¬𝑈(𝑧2)),    1 ≤ 𝑖 ≤ 𝑛 − 1 

 

𝑅𝑖(𝑦) ≔ ∃𝑧(𝐸𝑖+1(𝑦, 𝑧) ∧ ¬𝐸𝑖(𝑦, 𝑧) ∧ 𝑦 < 𝑧 ∧ 𝑈(𝑦) ∧ ¬𝑈(𝑧) ∧ 

∧ ∀𝑡1(𝐸𝑖(𝑦, 𝑡1) → 𝑈(𝑡1)) ∧ ∀𝑡2(𝑦 < 𝑡2 < 𝑧 ∧ ¬𝐸𝑖(𝑦, 𝑡2) → ¬𝑈(𝑡2))),    1 ≤ 𝑖
≤ 𝑛 − 1, 

 

𝐿𝑖(𝑦): = ∃𝑧(𝐸𝑖+1(𝑦, 𝑧) ∧ ¬𝐸𝑖(𝑦, 𝑧) ∧ 𝑦 > 𝑧 ∧ ¬𝑈(𝑦) ∧ 𝑈(𝑧) ∧ 

∧ ∀𝑡1(𝐸𝑖(𝑦, 𝑡1) → ¬𝑈(𝑡1)) ∧ ∀𝑡2(𝑧 < 𝑡2 < 𝑦 ∧ ¬𝐸𝑖(𝑦, 𝑡2) → 𝑈(𝑡2))),    1 ≤ 𝑖
≤ 𝑛 − 1. 

 

Case 1. Predicate 𝑃(𝑥) defines an irrational cut with respect to the 𝐸𝑛−1-classes. For 

this case 𝜃𝑖(𝑥) doesn’t have realzations in 𝑀 for all 1 ≤ 𝑖 ≤ 𝑛 − 1 and 𝑃(𝑥) is 

divided into two convex formulas: 𝑃(𝑥) ∧ 𝑈(𝑥) and 𝑃(𝑥) ∧ ¬𝑈(𝑥). 

Case 2a. For some 2 ≤ 𝑖 ≤ 𝑛 − 1 each class 𝐸𝑖 is divided by the predicate 

𝑈(𝑥) and 𝑈(𝑥) is irrational with respect to the 𝐸𝑖−1-classes. In this case 𝑃(𝑥) is 

divided into the 2(𝑛 − 𝑖 + 1) formulas:  

 

𝑈𝑗
𝑙(𝑥): = 𝑃(𝑥) ∧ ∀𝑦(𝜃𝑖(𝑦) → 𝑥 < 𝑦 ∧ ¬𝐸𝑖+𝑗−2(𝑥, 𝑦) ∧ 𝐸𝑖+𝑗−1(𝑥, 𝑦)), 

 

𝑈1
𝑙(𝑥): = 𝑃(𝑥) ∧ ∀𝑦(𝜃𝑖(𝑦) → 𝐸𝑖(𝑥, 𝑦) ∧ 𝑈(𝑥)), 

 

𝑈1
𝑟(𝑥): = 𝑃(𝑥) ∧ ∀𝑦(𝜃𝑖(𝑦) → 𝐸𝑖(𝑥, 𝑦) ∧ ¬𝑈(𝑥)) 

 

𝑈𝑗
𝑟(𝑥): = 𝑃(𝑥) ∧ ∀𝑦(𝜃𝑖(𝑦) → 𝑥 > 𝑦 ∧ ¬𝐸𝑖+𝑗−2(𝑥, 𝑦) ∧ 𝐸𝑖+𝑗−1(𝑥, 𝑦)) 

 

where 2 ≤ 𝑗 ≤ 𝑛 − 𝑖 + 1. 

 

Case 2b. Some 𝐸1-class is divided by 𝑈(𝑥). In this case 𝑃(𝑥) is divided into 

the 2𝑛 formulas: 

 

𝑈𝑗
𝑙(𝑥): = 𝑃(𝑥) ∧ ∀𝑦(𝜃𝑖(𝑦) → 𝑥 < 𝑦 ∧ ¬𝐸𝑖+𝑗−2(𝑥, 𝑦) ∧ 𝐸𝑖+𝑗−1(𝑥, 𝑦)), 

 

𝑈𝑗
𝑟(𝑥): = 𝑃(𝑥) ∧ ∀𝑦(𝜃1(𝑦) → 𝑥 > 𝑦 ∧ ¬𝐸𝑗(𝑥, 𝑦) ∧ 𝐸𝑗+1(𝑥, 𝑦)),    1 ≤ 𝑗 ≤ 𝑛 − 1 

 

𝑈0
𝑙 (𝑥): = 𝑃(𝑥) ∧ 𝜃1(𝑥) ∧ 𝑈(𝑥),    𝑈0

𝑟(𝑥): = 𝑃(𝑥) ∧ 𝜃1(𝑥) ∧ ¬𝑈(𝑥) 

 

𝑈𝑗
𝑟(𝑥): = 𝑃(𝑥) ∧ ∀𝑦(𝜃1(𝑦) → 𝑥 > 𝑦 ∧ ¬𝐸𝑗(𝑥, 𝑦) ∧ 𝐸𝑗+1(𝑥, 𝑦)),    1 ≤ 𝑗 ≤ 𝑛 − 1 
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Case 3. For some 2 ≤ 𝑖 ≤ 𝑛 each 𝐸𝑖-class is divided by the predicate 𝑈(𝑥) and 𝑈(𝑥) 

is quasirational to the right with respect to the 𝐸𝑖−1-classes. In this case 𝑃(𝑥) divided 

into the 2(𝑛 − 𝑖) + 3 formulas:  

 

𝑈𝑗
𝑙(𝑥): = 𝑃(𝑥) ∧ ∀𝑦(𝜃𝑖(𝑦) → 𝑥 < 𝑦 ∧ ¬𝐸𝑛−𝑗(𝑥, 𝑦) ∧ 𝐸𝑛−𝑗+1(𝑥, 𝑦)), 

 

𝑈1
𝑙(𝑥): = 𝑃(𝑥) ∧ ∀𝑦(𝑅𝑖−1(𝑦) → 𝑥 < 𝑦 ∧ 𝐸𝑖(𝑥, 𝑦)),    𝑈0

𝑙 (𝑥): = 𝑃(𝑥) ∧ 𝑅𝑖−1(𝑥), 
 

𝑈1
𝑟(𝑥): = 𝑃(𝑥) ∧ ∀𝑦(𝑅𝑖−1(𝑦) → 𝑥 > 𝑦 ∧ 𝐸𝑖(𝑥, 𝑦)) 

 

𝑈𝑗
𝑟(𝑥): = 𝑃(𝑥) ∧ ∀𝑦(𝜃𝑖(𝑦) → 𝑥 > 𝑦 ∧ ¬𝐸𝑛−𝑗(𝑥, 𝑦) ∧ 𝐸𝑛−𝑗+1(𝑥, 𝑦)) 

 

where 2 ≤ 𝑗 ≤ 𝑛 − 𝑖 + 1. 

 

Case 4. For some 2 ≤ 𝑖 ≤ 𝑛 each class 𝐸𝑖 is divided by the predicate 𝑈(𝑥) and 

𝑈(𝑥) is quasirational to the left with respect to the 𝐸𝑖−1-classes. In this case 𝑃(𝑥) is 

divided into the 2(𝑛 − 𝑖) + 3 formulas: 

 

𝑈𝑗
𝑙(𝑥): = 𝑃(𝑥) ∧ ∀𝑦(𝜃𝑖(𝑦) → 𝑥 < 𝑦 ∧ ¬𝐸𝑛−𝑗(𝑥, 𝑦) ∧ 𝐸𝑛−𝑗+1(𝑥, 𝑦)), 

 

𝑈1
𝑙(𝑥): = 𝑃(𝑥) ∧ ∀𝑦(𝐿𝑖−1(𝑦) → 𝑥 < 𝑦 ∧ 𝐸𝑖(𝑥, 𝑦)),    𝑈0

𝑙 (𝑥): = 𝑃(𝑥) ∧ 𝐿𝑖−1(𝑥), 
 

𝑈1
𝑟(𝑥): = 𝑃(𝑥) ∧ ∀𝑦(𝐿𝑖−1(𝑦) → 𝑥 > 𝑦 ∧ 𝐸𝑖(𝑥, 𝑦)) 

 

𝑈𝑗
𝑟(𝑥): = 𝑃(𝑥) ∧ ∀𝑦(𝜃𝑖(𝑦) → 𝑥 > 𝑦 ∧ ¬𝐸𝑛−𝑗(𝑥, 𝑦) ∧ 𝐸𝑛−𝑗+1(𝑥, 𝑦)) 

 

where 2 ≤ 𝑗 ≤ 𝑛 − 𝑖 + 1. 

 

Lemma 2.7 Let 𝑝, 𝑞 ∈ 𝑆1(∅) be two non-algebraic one-types over the empty 

set, such that 𝑝 ⊥𝑤 𝑞 and 𝑅𝐶(𝑝) = 𝑅𝐶(𝑞) = 𝑛. If 𝑝(𝑀) is partitioned into 𝑠 ∅-

definable convex sets, then 𝑞(𝑀) is also partitioned into 𝑠 ∅-definable convex sets.  

 

 Proof: Let be an 𝑃(𝑥) isolating formula of 𝑝. As 𝑅𝐶(𝑝) = 𝑅𝐶(𝑞), there exists 

a (𝑝, 𝑞)-splitting formula 𝑅(𝑥, 𝑦) such that the function 𝑓(𝑥): = s𝑢𝑝 𝑅(𝑥, 𝑀) is 

locally monotone on 𝑝(𝑀) [56, P. 606]. We list, in each of the following cases, the 

convex formulas partitioning 𝑞. 

Case 1. 𝑈(𝑥) is irrational with respect to the 𝐸𝑛−1-classes. Lemma 2.6 shows 

that 𝑃(𝑥) is divided into the two formulas  

 𝑈1
𝑙(𝑥): = 𝑃(𝑥) ∧ 𝑈(𝑥) 

and  

 𝑈1
𝑟(𝑥): = 𝑃(𝑥) ∧ ¬𝑈(𝑥). 

 



35 
 

If 𝑓 increases strictly on 𝑝(𝑀)/𝐸𝑛−1 then  

 

𝑄1
𝑙 (𝑥): = ∃𝑡(𝑈1

𝑙(𝑡) ∧ 𝑅(𝑡, 𝑥)),    𝑄1
𝑟(𝑥): = ∃𝑡(𝑈1

𝑟(𝑡) ∧ 𝑅(𝑡, 𝑥)) ∧ ¬𝑄1
𝑙 (𝑥) 

 

In case if 𝑓 is strictly decreasing on 𝑝(𝑀)/𝐸𝑛−1 then  

 

𝑄1
𝑙 (𝑥): = ∃𝑡(𝑈1

𝑟(𝑡) ∧ 𝑅(𝑡, 𝑥)),    𝑄1
𝑟(𝑥): = ∃𝑡(𝑈1

𝑙(𝑡) ∧ 𝑅(𝑡, 𝑥)) ∧ ¬𝑄1
𝑙 (𝑥) 

 

Case 2a. For some 2 ≤ 𝑖 ≤ 𝑛 − 1 some 𝐸𝑖-class is divided by predicate 𝑈(𝑥) and 

𝑈(𝑥) is irrational with respect to the 𝐸𝑖−1-classes. 

In case when f is strictly increasing on 𝑝(𝑀)/𝐸𝑛−1  

 

𝑄𝑛−𝑖+1
𝑙 (𝑥): = ∃𝑡(𝑈𝑛−𝑖+1

𝑙 (𝑡) ∧ 𝑅(𝑡, 𝑥)) 

 

𝑄𝑛−𝑖+1
𝑟 (𝑥): = ∃𝑡(𝑈𝑛−𝑖+1

𝑟 (𝑡) ∧ 𝑅(𝑡, 𝑥)) ∧ ¬𝑄𝑛−𝑖+1
𝑙 (𝑥) ∧. . .∧ ¬𝑄1

𝑙 (𝑥) ∧ 

∧ ¬𝑄1
𝑟(𝑥) ∧. . .∧ ¬𝑄𝑛−𝑖

𝑟 (𝑥). 
 

If 𝑓 is strictly decreasing on 𝑝(𝑀)/𝐸𝑛−1  

 

 𝑄𝑛−𝑖+1
𝑙 (𝑥): = ∃𝑡(𝑈𝑛−𝑖+1

𝑟 (𝑡) ∧ 𝑅(𝑡, 𝑥)) 

 

 𝑄𝑛−𝑖+1
𝑟 (𝑥): = ∃𝑡 (𝑈𝑛−𝑖+1

𝑙 (𝑡) ∧ 𝑅(𝑡, 𝑥)) ∧ ¬𝑄𝑛−𝑖+1
𝑙 (𝑥) ∧. . .∧ ¬𝑄1

𝑙 (𝑥) ∧ 

 ∧ ¬𝑄1
𝑟(𝑥) ∧. . .∧ ¬𝑄𝑛−𝑖

𝑟 (𝑥). 
 

Case 2b. Some 𝐸1-class is divided by predicate 𝑈(𝑥). If 𝑓 is strictly increasing on 

𝑝(𝑀)/𝐸𝑛−1 then 

 

𝑄𝑛−1
𝑙 (𝑥): = ∃𝑡(𝑈𝑛−1

𝑙 (𝑡) ∧ 𝑅(𝑡, 𝑥)) 

 

𝑄𝑛−1
𝑟 (𝑥): = ∃𝑡(𝑈𝑛−1

𝑟 (𝑡) ∧ 𝑅(𝑡, 𝑥)) ∧ ¬𝑄𝑛−1
𝑙 (𝑥) ∧. . .∧ ¬𝑄1

𝑙 (𝑥) ∧ ¬𝑄0
𝑙 (𝑥) ∧ 

∧ ¬𝑄0
𝑟(𝑥) ∧ ¬𝑄1

𝑟(𝑥) ∧. . .∧ ¬𝑄𝑛−2
𝑟 (𝑥). 

 

If 𝑓 is strictly decreasing on 𝑝(𝑀)/𝐸𝑛−1 then 

 

𝑄𝑛−1
𝑙 (𝑥): = ∃𝑡(𝑈𝑛−1

𝑟 (𝑡) ∧ 𝑅(𝑡, 𝑥)) 

 

𝑄𝑛−1
𝑟 (𝑥): = ∃𝑡 (𝑈𝑛−1

𝑙 (𝑡) ∧ 𝑅(𝑡, 𝑥)) ∧ ¬𝑄𝑛−1
𝑙 (𝑥) ∧. . .∧ ¬𝑄1

𝑙 (𝑥) ∧ ¬𝑄0
𝑙 (𝑥) ∧ 

∧ ¬𝑄0
𝑟(𝑥) ∧ ¬𝑄1

𝑟(𝑥) ∧. . .∧ ¬𝑄𝑛−2
𝑟 (𝑥). 

 

Furthermore, if 𝑓 is strictly increasing on 𝐸𝑚+1(𝛼, 𝑀)/𝐸𝑚 for some 𝛼 ∈ 𝑝(𝑀), 

where 0 ≤ 𝑚 ≤ 𝑛 − 2, then 
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𝑄𝑚
𝑙 (𝑥): = ∃𝑡(𝑈𝑚

𝑙 (𝑡) ∧ 𝑅(𝑡, 𝑥)) ∧ ¬𝑄𝑛−1
𝑙 (𝑥) ∧. . .∧ ¬𝑄𝑚+1

𝑙 (𝑥) 

 

𝑄𝑛−1
𝑟 (𝑥): = ∃𝑡(𝑈𝑚

𝑟 (𝑡) ∧ 𝑅(𝑡, 𝑥)) ∧ ¬𝑄𝑛−1
𝑙 (𝑥) ∧. . .∧ ¬𝑄1

𝑙 (𝑥) ∧ ¬𝑄0
𝑙 (𝑥) ∧ 

∧ ¬𝑄0
𝑟(𝑥) ∧ ¬𝑄1

𝑟(𝑥) ∧. . .∧ ¬𝑄𝑚−1
𝑟 (𝑥). 

 

In the case when 𝑓 is strictly decreasing on 𝐸𝑚+1(𝑎, 𝑀)/𝐸𝑚 for some 𝛼 ∈ 𝑝(𝑀), 

where 0 ≤ 𝑚 ≤ 𝑛 − 2  

 

𝑄𝑚
𝑙 (𝑥): = ∃𝑡(𝑈𝑚

𝑟 (𝑡) ∧ 𝑅(𝑡, 𝑥)) ∧ ¬𝑄𝑛−1
𝑙 (𝑥) ∧. . .∧ ¬𝑄𝑚+1

𝑙 (𝑥) 

 

𝑄𝑛−1
𝑟 (𝑥): = ∃𝑡 (𝑈𝑚

𝑙 (𝑡) ∧ 𝑅(𝑡, 𝑥)) ∧ ¬𝑄𝑛−1
𝑙 (𝑥) ∧. . .∧ ¬𝑄1

𝑙 (𝑥) ∧ ¬𝑄0
𝑙 (𝑥) ∧ 

∧ ¬𝑄0
𝑟(𝑥) ∧ ¬𝑄1

𝑟(𝑥) ∧. . .∧ ¬𝑄𝑚−1
𝑟 (𝑥). 

 

Case 3. For some 2 ≤ 𝑖 ≤ 𝑛 − 1 some 𝐸𝑖-class is divided by the predicate 𝑈(𝑥) and 

𝑈(𝑥) is quasirational to the right with respect to the 𝐸𝑖−1-classes. 

 

 𝑄𝑛−𝑖+1
𝑙 (𝑥): = ∃𝑡(𝑈𝑛−𝑖+1

𝑙 (𝑡) ∧ 𝑅(𝑡, 𝑥)), 
 

𝑄0
𝑟(𝑥): = ∃𝑡(𝑈0

𝑙 (𝑡) ∧ 𝑅(𝑡, 𝑥)) ∧ ¬𝑄𝑛−𝑖+1
𝑙 (𝑥) ∧. . .∧ ¬𝑄0

𝑙 (𝑥). 
 

𝑄𝑛−𝑖+1
𝑟 (𝑥): = ∃𝑡(𝑈𝑛−𝑖+1

𝑟 (𝑡) ∧ 𝑅(𝑡, 𝑥)) ∧ ¬𝑄𝑛−𝑖+1
𝑙 (𝑥) ∧. . .∧ ¬𝑄1

𝑙 (𝑥) ∧ ¬𝑄0
𝑙 (𝑥) ∧ 

∧ ¬𝑄1
𝑟(𝑥) ∧. . .∧ ¬𝑄𝑛−𝑖

𝑟 (𝑥). 
 

Case 4. For some 2 ≤ 𝑖 ≤ 𝑛 some 𝐸𝑖-class is divided by the predicate 𝑈(𝑥) and 𝑈(𝑥) 

is quasirational to the right with respect to the 𝐸𝑖−1-classes. 

 

𝑄𝑛−𝑖+1
𝑙 (𝑥): = ∃𝑡(𝑈𝑛−𝑖+1

𝑙 (𝑡) ∧ 𝑅(𝑡, 𝑥)), 
 

𝑄0
𝑟(𝑥): = ∃𝑡(𝑈0

𝑟(𝑡) ∧ 𝑅(𝑡, 𝑥)) ∧ ¬𝑄𝑛−𝑖+1
𝑙 (𝑥) ∧. . .∧ ¬𝑄1

𝑙 (𝑥). 
 

𝑄𝑛−𝑖+1
𝑟 (𝑥): = ∃𝑡(𝑈𝑛−𝑖+1

𝑟 (𝑡) ∧ 𝑅(𝑡, 𝑥)) ∧ ¬𝑄𝑛−𝑖+1
𝑙 (𝑥) ∧. . .∧ ¬𝑄1

𝑙 (𝑥) ∧ 

∧ ¬𝑄0
𝑟(𝑥) ∧ ¬𝑄1

𝑟(𝑥) ∧. . .∧ ¬𝑄𝑛−𝑖
𝑟 (𝑥). 

 

Lemma 2.8 Let 𝑝, 𝑞 ∈ 𝑆1(∅) be two non-algebraic one-types over the empty 

set, such that 𝑝 ⊥𝑤 𝑞 and 𝑅𝐶(𝑝) > 𝑅𝐶(𝑞). If 𝑝(𝑀) is partitioned into 𝑠 ∅-definable 

convex sets, then 𝑞(𝑀) is partitioned into 𝑙 ∅-definable convex sets, where 2 ≤ 𝑙 ≤
𝑠.  

 

Proof: Let 𝑅𝐶(𝑝) = 𝑛𝑝 and 𝑅𝐶(𝑞) = 𝑛𝑞. There exists an (𝑝, 𝑞)-splitting 

formula 𝑅(𝑥, 𝑦) such that 𝑓(𝑥): = s𝑢𝑝 𝑅(𝑥, 𝑀) is constant on each 𝐸𝑗
𝑝
-class [56, P. 

606], furthermore 𝐸𝑗
𝑝

(𝑥, 𝑦) is the greatest equivalence on 𝑝(𝑀) with this property 
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and 𝑓 is locally monotone on 𝑝(𝑀)/𝐸𝑗
𝑝
 where 𝑗 = 𝑛𝑝 − 𝑛𝑞 

Case 1. 𝑈(𝑥) is irrational with respect to the 𝐸𝑛𝑝−1
𝑝

-classes. The existence of a 

(𝑝, 𝑞)-splitting formula implies that 𝑃(𝑥) is divided into two formulas 𝑈1
𝑙(𝑥) and 

𝑈1
𝑟(𝑥). An 𝑓 is strictly monotone on 𝑝(𝑀)/𝐸𝑛𝑝−1

𝑝
. Thus if 𝑓 strictly increasing on 

𝑝(𝑀)/𝐸𝑛𝑝−1
𝑝

 then  

 

𝑄1
𝑙 (𝑥): = ∃𝑦(𝑈1

𝑙(𝑦) ∧ 𝑅(𝑦, 𝑥)),    𝑄1
𝑟(𝑥): = ∃𝑦(𝑈1

𝑟(𝑦) ∧ 𝑅(𝑦, 𝑥)) ∧ ¬𝑄1
𝑙 (𝑥) 

 

If 𝑓 is strictly decreasing on 𝑝(𝑀)/𝐸𝑛𝑝−1
𝑝

 then 

 

𝑄1
𝑙 (𝑥): = ∃𝑦(𝑈1

𝑟(𝑦) ∧ 𝑅(𝑦, 𝑥)),    𝑄1
𝑟(𝑥): = ∃𝑦(𝑈1

𝑙(𝑦) ∧ 𝑅(𝑦, 𝑥)) ∧ ¬𝑄1
𝑙 (𝑥) 

 

Case 2a. Some 𝐸𝑖
𝑝
-class is divided by the predicate 𝑈(𝑥) for some 2 ≤ 𝑖 ≤ 𝑛𝑝−1 and 

𝑈(𝑥) is irrational with respect to the 𝐸𝑖−1
𝑝

-classes. In this event 𝑝(𝑀) is partitioned 

by 𝑈(𝑥) into 2(𝑛𝑝 − 𝑖 + 1) ∅-definable convex sets. In the case when 𝑖 ≤ 𝑗 the 

formulas 𝑄𝑚
𝑙 (𝑥) and 𝑄𝑚

𝑟 (𝑥), for 𝑗 − 𝑖 + 2 ≤ 𝑚 ≤ 𝑛𝑝 − 𝑖 + 1, are defined as in 

Lemma 2.6 case 2a. If 𝑑𝑐𝑙({𝛼}) ∩ 𝑞(𝑀) ≠ ∅, where 𝛼 ∈ 𝑝(𝑀), then additionally we 

define the formula  

 

𝑄𝑗−𝑖+1
𝑐 (𝑥): = ∃𝑦 [ ∧

𝑡=1

𝑗−𝑖+1

(𝑈𝑡
𝑙(𝑦) ∨ 𝑈𝑡

𝑟(𝑦)) ∧ 𝑓(𝑦) = 𝑥] 

 

It’s clear that 𝑄𝑗−𝑖+1
𝑐 (𝑀) = {𝛽} for some 𝛽 ∈ 𝑞(𝑀). Formula is taken off if 

𝑑𝑐𝑙({𝛼}) ∩ 𝑞(𝑀) = ∅ for every 𝛼 𝑓𝑟𝑜𝑚 𝑝(𝑀). Therefore number of formulas are at 

most 2(𝑛𝑝 − 𝑗) + 1. 

When 𝑗 < 𝑖 the formulas 𝑄𝑚
𝑟 (𝑥) and 𝑄𝑚

𝑙 (𝑥) , for 𝑛𝑝 − 𝑖 + 1 ≥ 𝑚 ≥ 1, are 

defined as in Lemma 2.6 case 2a, and there are at most 2(𝑛𝑝 − 𝑖 + 1) of them. 

 

Case 2b. Some 𝐸1
𝑝
-class is divided by 𝑈(𝑥). In this case 𝑖 ≤ 𝑗 and we obtain 

2(𝑛𝑝 − 𝑗) formulas: 𝑄𝑚
𝑟 (𝑥) and 𝑄𝑚

𝑙 (𝑥), where 𝑗 ≤ 𝑚 ≤ 𝑛𝑝 − 1, if 𝑑𝑐𝑙({𝛼}) ∩

𝑞(𝑀) = ∅ for each 𝛼 ∈ 𝑝(𝑀). Otherwise the formula 𝑄𝑗−1
𝑐 (𝑥) is added. 

 

Case 3. Some 𝐸𝑖
𝑝
-class is divided by 𝑈(𝑥) for some 2 ≤ 𝑖 ≤ 𝑛𝑝 and 𝑈(𝑥) is 

quasirational to the right with respect to the 𝐸𝑖−1
𝑝

-classes. In the case when 𝑖 ≤ 𝑗 we 

obtain 2(𝑛𝑝 − 𝑗) + 1 formulas: 𝑄𝑚
𝑟 (𝑥) and 𝑄𝑚

𝑙 (𝑥), where 𝑗 − 𝑖 + 2 ≤ 𝑚 ≤ 𝑛𝑝 − 𝑖 +

1. In the case when 𝑖 > 𝑗 we obtain 2(𝑛𝑝 − 𝑖) + 3 formulas: 𝑄𝑚
𝑟 (𝑥) where 1 ≤ 𝑚 ≤

𝑛𝑝 − 𝑖 + 1 and 𝑄𝑚
𝑙 (𝑥) for m from interval: 𝑛𝑝 + 1 ≥ 𝑚 ≥ 0. 

 

Lemma 2.9  Suppose 𝑝, 𝑞 𝑓𝑟𝑜𝑚 𝑆1(∅) are two one-types non-algebraic which 

are over the empty set, such that 𝑅𝐶(𝑞) > 𝑅𝐶(𝑝) and 𝑝 ⊥𝑤 𝑞. If 𝑝(𝑀) is partitioned 
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into 𝑠 ∅-definable convex sets, then 𝑞(𝑀) is partitioned into 𝑙 ∅-definable convex 

sets, where 2 ≤ 𝑙 ≤ 𝑠.  

 

 Proof: There exists a (𝑞, 𝑝)-splitting formula 𝑅(𝑥, 𝑦) such that the function 

𝑓(𝑥): = s𝑢𝑝 𝑅(𝑥, 𝑀) is constant for all 𝐸𝑗
𝑞
-classes [56, P. 606], furthermore 

𝐸𝑗
𝑞

(𝑥, 𝑦) is the greatest equivalence on 𝑞(𝑀) with this property and 𝑓 is locally 

monotone on 𝑝(𝑀)/𝐸𝑗
𝑞
 where 𝑗 = 𝑛𝑞 − 𝑛𝑝 

Case 1. 𝑈(𝑥) is irrational with respect to the 𝐸𝑛𝑝−1
𝑝

-classes. Existence of a 

(𝑞, 𝑝)-splitting formula implies that 𝑃(𝑥) is divided into two formulas 𝑈1
𝑙(𝑥) and 

𝑈1
𝑟(𝑥). An 𝑓 is strictly monotone on 𝑞(𝑀)/𝐸𝑛𝑞−1

𝑞
. Thus if 𝑓 strictly increasing on 

𝑞(𝑀)/𝐸𝑛𝑞−1
𝑞

 then  

 

𝑄1
𝑙 (𝑥): = ∀𝑥1∀𝑦(𝐸𝑛𝑞−1

𝑞
(𝑥, 𝑥1) ∧ 𝑅(𝑥1, 𝑦) → 𝑈1

𝑙(𝑦)) 

 

𝑄1
𝑟(𝑥): = ∃𝑥1∃𝑦(𝐸𝑛𝑞−1

𝑞
(𝑥, 𝑥1) ∧ 𝑅(𝑥1, 𝑦) ∧ 𝑈1

𝑟(𝑦)) ∧ ¬𝑄1
𝑙 (𝑥) 

 

If 𝑓 is strictly decreasing on 𝑞(𝑀)/𝐸𝑛𝑞−1
𝑞

 then 

 

𝑄1
𝑙 (𝑥): = ∀𝑥1∀𝑦(𝐸𝑛𝑞−1

𝑞
(𝑥, 𝑥1) ∧ 𝑅(𝑥1, 𝑦) → 𝑈1

𝑟(𝑦)) 

 

𝑄1
𝑟(𝑥): = ∃𝑥1∃𝑦(𝐸𝑛𝑞−1

𝑞
(𝑥, 𝑥1) ∧ 𝑅(𝑥1, 𝑦) ∧ 𝑈1

𝑙(𝑦)) ∧ ¬𝑄1
𝑙 (𝑥) 

 

Case 2a. 𝐸𝑖
𝑝
-class is divided by the predicate 𝑈(𝑥) for some 2 ≤ 𝑖 ≤ 𝑛𝑝−1 and 𝑈(𝑥) 

is irrational with respect to the 𝐸𝑖−1
𝑝

-classes. In this event 𝑝(𝑀) is partitioned by 

𝑈(𝑥) into 2(𝑛𝑝 − 𝑖 + 1) ∅-definable convex sets. In the case when on 𝑞(𝑀)/𝐸𝑛𝑞−1
𝑞

 - 

𝑓 is strictly increasing holds 

 

𝑄1
𝑟(𝑥): = 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑥1 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑦(𝐸𝑛𝑞−1

𝑞
(𝑥, 𝑥1) ∧ 𝑅(𝑥1, 𝑦) ∧ 𝑈𝑛𝑝−𝑖+1

𝑟 (𝑦)) ∧ 

∧ ¬𝑄𝑛𝑝−𝑖+1
𝑙 (𝑥) ∧. . .∧ ¬𝑄1

𝑙 (𝑥) ∧ ¬𝑄1
𝑟(𝑥) ∧. . .∧ ¬𝑄𝑛𝑝−𝑖

𝑙 (𝑥) 

 

𝑄𝑛𝑝−𝑖+1
𝑙 (𝑥): = 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑥1𝑓𝑜𝑟 𝑎𝑛𝑦 𝑦(𝐸𝑛𝑞−1

𝑞
(𝑥, 𝑥1) ∧ 𝑅(𝑥1, 𝑦) → 𝑈𝑛𝑝−𝑖+1

𝑙 (𝑦)) 

 

In the case when on 𝑞(𝑀)/𝐸𝑛𝑞−1
𝑞

 - 𝑓 is strictly decreasing holds 

 

𝑄1
𝑟(𝑥): = 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑥1 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑦(𝐸𝑛𝑞−1

𝑞
(𝑥, 𝑥1) ∧ 𝑅(𝑥1, 𝑦) ∧ 𝑈𝑛𝑝−𝑖+1

𝑙 (𝑦)) ∧ 

∧ ¬𝑄𝑛𝑝−𝑖+1
𝑙 (𝑥) ∧. . .∧ ¬𝑄1

𝑙 (𝑥) ∧ ¬𝑄1
𝑟(𝑥) ∧. . .∧ ¬𝑄𝑛𝑝−𝑖

𝑙 (𝑥) 
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𝑄𝑛𝑝−𝑖+1
𝑙 (𝑥): = 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑥1𝑓𝑜𝑟 𝑎𝑛𝑦 𝑦(𝐸𝑛𝑞−1

𝑞
(𝑥, 𝑥1) ∧ 𝑅(𝑥1, 𝑦) → 𝑈𝑛𝑝−𝑖+1

𝑟 (𝑦)) 

 

In the case when 𝑓 is strictly increasing on 𝐸𝑗+𝑚+𝑖−2
𝑞

(𝛼, 𝑀)/𝐸𝑗+𝑚+𝑖−1
𝑞

 for some 

𝛼 ∈ 𝑞(𝑀), where 1 ≤ 𝑚 ≤ 𝑛𝑝 − 𝑖  

 

𝑄𝑚
𝑙 (𝑥): = ∀𝑥1∀𝑦 (𝐸𝑗+𝑚+𝑖−2

𝑞 (𝑥, 𝑥1) ∧ 𝑅(𝑥1, 𝑦) → 𝑈𝑚
𝑙 (𝑦)) ∧ 

∧ ¬𝑄𝑛𝑝−𝑖+1
𝑙 (𝑥) ∧. . .∧ ¬𝑄𝑚+1

𝑙 (𝑥) 

 

𝑄𝑚
𝑟 (𝑥): = ∃𝑥1∃𝑦 (𝐸𝑗+𝑚+𝑖−2

𝑞 (𝑥, 𝑥1) ∧ 𝑅(𝑥1, 𝑦) ∧ 𝑈𝑚
𝑟 (𝑦)) ∧ 

∧ ¬𝑄𝑛𝑝−𝑖+1
𝑙 (𝑥) ∧. . .∧ ¬𝑄1

𝑙 (𝑥) ∧ ¬𝑄1
𝑟(𝑥) ∧. . .∧ ¬𝑄𝑚−1

𝑟 (𝑥) 

 

In the case when 𝑓 is strictly decreasing on 𝐸𝑗+𝑚+𝑖−2
𝑞

(𝛼, 𝑀)/𝐸𝑗+𝑚+𝑖−1
𝑞

 for some 

𝛼 ∈ 𝑞(𝑀), where 1 ≤ 𝑚 ≤ 𝑛𝑝 − 𝑖  

 

𝑄𝑚
𝑙 (𝑥): = ∀𝑥1∀𝑦 (𝐸𝑗+𝑚+𝑖−2

𝑞 (𝑥, 𝑥1) ∧ 𝑅(𝑥1, 𝑦) → 𝑈𝑚
𝑟 (𝑦)) ∧ 

∧ ¬𝑄𝑛𝑝−𝑖+1
𝑙 (𝑥) ∧. . .∧ ¬𝑄𝑚+1

𝑙 (𝑥) 

 

𝑄𝑚
𝑟 (𝑥): = ∃𝑥1∃𝑦 (𝐸𝑗+𝑚+𝑖−2

𝑞 (𝑥, 𝑥1) ∧ 𝑅(𝑥1, 𝑦) ∧ 𝑈𝑚
𝑙 (𝑦)) ∧ 

∧ ¬𝑄𝑛𝑝−𝑖+1
𝑙 (𝑥) ∧. . .∧ ¬𝑄1

𝑙 (𝑥) ∧ ¬𝑄1
𝑟(𝑥) ∧. . .∧ ¬𝑄𝑚−1

𝑟 (𝑥) 

 

Hence we obtain 2(𝑛𝑝 − 𝑖 + 1) number of formulas. 

Case 2b. Some 𝐸1
𝑝
-class is divided by 𝑈(𝑥). In this case we obtain 2𝑛𝑝 

formulas: 𝑄𝑚
𝑟 (𝑥) and 𝑄𝑚

𝑙 (𝑥), for 0 ≤ 𝑚 ≤ 𝑛𝑝 − 1. 

Case 3. Some 𝐸𝑖
𝑝
-class is divided by 𝑈(𝑥) for some 2 ≤ 𝑖 ≤ 𝑛𝑝 and with 

respect to the 𝐸𝑖−1
𝑝

-classes 𝑈(𝑥) is quasirational to the right. 2(𝑛𝑝 − 𝑖) + 3 formulas 

are obtained in this case:  𝑄𝑚
𝑟 (𝑥) where 1 ≤ 𝑚 ≤ 𝑛𝑝 − 𝑖 + 1 and 𝑄𝑚

𝑙 (𝑥), where 

0 ≤ 𝑚 ≤ 𝑛𝑝 + 1.  

 

Now we can prove Theorem 2.3. 

 Proof: Let 𝑅𝐶(𝑝) = 𝑛𝑝. Based on Lemma 2.6 a number of implementation of 

𝑝(𝑀′) is partitioned by 𝑈(𝑥) into s ∅-definable 1-indiscernible convex sets, where 

𝑠 ≤ 2𝑛𝑝. Using Lemmas 2.7-2.9 a number of implementation of every non-algebraic 

1-type 𝑞 ∈ 𝑆(∅), with 𝑝 ⊥𝑤 𝑞, 𝑞(𝑀′) is also partitioned into 𝑙 ∅-definable convex 

sets, where 𝑙 ≤ 𝑠, and each of these sets is a number of implementation of one-types 

over ∅ in the expanded model. Define their convexity ranks: 

Case 1. 𝑈(𝑥) is irrational with respect to the 𝐸𝑛𝑝−1
𝑝

-classes. Let  

 

 𝑝1
𝑙 : = {𝑈1

𝑙(𝑥)}, 𝑝1
𝑟: = {𝑈1

𝑟(𝑥)}, 𝑞1
𝑙 : = {𝑄1

𝑙 (𝑥)}, 𝑞1
𝑟: = {𝑄1

𝑟(𝑥)} 
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It is clear that 𝑝1
𝑙 ⊥𝑤 𝑞1

𝑙  and 𝑝1
𝑟 ⊥𝑤 𝑞1

𝑟 with  

 

 𝑅𝐶(𝑝1
𝑙 ) = 𝑅𝐶(𝑝1

𝑟 = 𝑛𝑝), 𝑅𝐶(𝑞1
𝑙 = 𝑅𝐶(𝑞1

𝑟) = 𝑛𝑞 

 

From this point and forward we omit the indication of weakly orthogonal pairs 

among these types  

 𝑝1
𝑙 ⊥𝑤 𝑝1

𝑟 , 𝑞1
𝑙 ⊥𝑤 𝑞1

𝑟 .  𝑝1
𝑙 ⊥𝑤 𝑞1

𝑟 , 𝑞1
𝑙 ⊥𝑤 𝑝1

𝑟 
 

Case 2a. 𝐸𝑖
𝑝
-class is divided by 𝑈(𝑥) where 2 ≤ 𝑖 ≤ 𝑛𝑝 − 1 and 𝑈(𝑥) is irrational 

with respect to the 𝐸𝑖−1
𝑝

-classes. 

Suppose 

 

 𝑝𝑚
𝑟 : = {𝑈𝑚

𝑟 (𝑥)} and  𝑝𝑚
𝑙 : = {𝑈𝑚

𝑙 (𝑥)} for 𝑛𝑝 − 𝑖 + 1 ≥ 𝑚 ≥ 1.  

 

If 

(1) 𝑅𝐶(𝑞) = 𝑅𝐶(𝑝) then 𝑞𝑚
𝑙 : = {𝑄𝑚

𝑙 (𝑥)} and  𝑞𝑚
𝑟 : = {𝑄𝑚

𝑟 (𝑥)}  𝑓𝑜𝑟   𝑛𝑝 − 𝑖 +

1 ≥ 𝑚 ≥ 1. Then 𝑝𝑚
𝑙 ⊥𝑤 𝑞𝑚

𝑙 , 𝑝𝑚
𝑟 ⊥𝑤 𝑞𝑚

𝑟 , and  

 

 𝑅𝐶(𝑝𝑚
𝑙 ) = 𝑅𝐶(𝑞𝑚

𝑙 ) = 𝑅𝐶(𝑝𝑚
𝑟 ) = 𝑅𝐶(𝑞𝑚

𝑟 ) = 𝑚 + 𝑖 − 1 
 

where 1 ≤ 𝑚 ≤ 𝑛𝑝 − 𝑖 + 1 

 

(2) If 𝑅𝐶(𝑝) > 𝑅𝐶(𝑞). Let 𝑗: = 𝑛𝑝 − 𝑛𝑞. If 𝑖 ≤ 𝑗, then  

 

 𝑞𝑚
𝑙 : = {𝑄𝑚

𝑙 (𝑥)}, 𝑞𝑚
𝑟 : = {𝑄𝑚

𝑟 (𝑥)}, 𝑝𝑚
𝑙 ⊥𝑤 𝑞𝑚

𝑙 , 𝑝𝑚
𝑟 ⊥𝑤 𝑞𝑚

𝑟  

 

for 𝑗 − 𝑖 + 2 ≤ 𝑚 ≤ 𝑛𝑝 − 𝑖 + 1. 

If ∃𝛼 𝑓𝑟𝑜𝑚 𝑝(𝑀′) such that 𝑑𝑐𝑙({𝛼}) ∩ 𝑞(𝑀′) ≠ ∅ then the formula 

𝑄𝑗−𝑖+1
𝑐 (𝑥) additionally appears and so is the type 𝑞𝑗−𝑖+1

𝑐 : = {𝑄𝑗−𝑖+1(𝑥)
𝑐 }. It is clear 

that 𝑅𝐶(𝑞𝑗−𝑖+1
𝑐 ) = 0. If 𝑑𝑐𝑙({𝛼}) ∩ 𝑞(𝑀′) = ∅ for every 𝛼 ∈ 𝑝(𝑀′) then this 

formula doesn’t appear. Also  

𝑅𝐶(𝑝𝑚
𝑙 ) = 𝑅𝐶(𝑝𝑚

𝑟 ) = 𝑚 + 𝑖 − 1 

for 1 ≤ 𝑚 ≤ 𝑚𝑛𝑝 − 𝑖 + 1,  

and 

𝑅𝐶(𝑞𝑚
𝑙 ) = 𝑅𝐶(𝑞𝑚

𝑟 ) = 𝑚 + 𝑖 − 1 − 𝑗 

for 𝑗 − 𝑖 + 2 ≤ 𝑚 ≤ 𝑛𝑝 − 𝑖 + 1. 

 

In case of 𝑖 > 𝑗 the situation is identical to case (1). 

 

(3) If 𝑅𝐶(𝑝) < 𝑅𝐶(𝑞). Let 𝑗: = 𝑛𝑞 − 𝑛𝑝. In this case  
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𝑞𝑚
𝑙 : = {𝑄𝑚

𝑙 (𝑥)}, 𝑞𝑚
𝑟 : = {𝑄𝑚

𝑟 (𝑥)}, 𝑝𝑚
𝑙 ⊥𝑤 𝑞𝑚

𝑙 , 𝑝𝑚
𝑟 ⊥𝑤 𝑞𝑚

𝑟  

for 1 ≤ 𝑚 ≤ 𝑛𝑝 − 𝑖 + 1. Note that  

𝑅𝐶(𝑝𝑚
𝑙 ) = 𝑅𝐶(𝑝𝑚

𝑟 ) = 𝑚 + 𝑖 − 1, 𝑚 + 𝑖 − 1 + 𝑗 = 𝑅𝐶(𝑞𝑚
𝑟 ) = 𝑅𝐶(𝑞𝑚

𝑙 ) 

where 𝑛𝑝 − 𝑖 + 1 ≥ 𝑚 ≥ 1.  

 

Case 2b. 𝑈(𝑥) divides 𝐸1
𝑝
-class. Suppose 𝑝𝑚

𝑟 : = {𝑈𝑚
𝑟 (𝑥)} and 𝑝𝑚

𝑙 : = {𝑈𝑚
𝑙 (𝑥)} 

where 0 ≤ 𝑚 ≤ 𝑛𝑝 − 1. 

(1) 𝑅𝐶(𝑝) = 𝑅𝐶(𝑞). In this case  

 𝑞𝑚
𝑙 : = {𝑄𝑚

𝑙 (𝑥)}, 𝑞𝑚
𝑟 : = {𝑄𝑚

𝑟 (𝑥)}, 𝑝𝑚
𝑙 ⊥𝑤 𝑞𝑚

𝑙 , 𝑝𝑚
𝑟 ⊥𝑤 𝑞𝑚

𝑟  

and  

 𝑅𝐶(𝑝𝑚
𝑙 ) = 𝑅𝐶(𝑞𝑚

𝑙 ) = 𝑅𝐶(𝑝𝑚
𝑟 ) = 𝑅𝐶(𝑞𝑚

𝑟 ) = 𝑚 + 1 

(2) If 𝑅𝐶(𝑝) > 𝑅𝐶(𝑞), then  

 𝑞𝑚
𝑙 : = {𝑄𝑚

𝑙 (𝑥)}, 𝑞𝑚
𝑟 : = {𝑄𝑚

𝑟 (𝑥)}, 𝑝𝑚
𝑙 ⊥𝑤 𝑞𝑚

𝑙 , 𝑝𝑚
𝑟 ⊥𝑤 𝑞𝑚

𝑟  

for 𝑗 ≤ 𝑚 ≤ 𝑛𝑝 − 1. If exists 𝛼 𝑓𝑟𝑜𝑚 𝑝(𝑀′) such that 𝑑𝑐𝑙({𝛼}) ∩ 𝑞(𝑀′) ≠ ∅ then 

the formula 𝑄𝑗−1
𝑐 (𝑥) additionally appears and so is the type 𝑞𝑗−1

𝑐 : = {𝑄𝑗−1
𝑐 (𝑥)}. It is 

clear that 𝑅𝐶(𝑞𝑗−1
𝑐 ) = 0. In case of 𝑑𝑐𝑙({𝛼}) ∩ 𝑞(𝑀′) = ∅ for each 𝛼 ∈ 𝑝(𝑀′) the 

formula doesn’t appear. Note that  

 𝑅𝐶(𝑝𝑚
𝑙 ) = 𝑅𝐶(𝑝𝑚

𝑟 ) = 𝑚 + 1 

for 0 ≤ 𝑚 ≤ 𝑛𝑝 − 1, and  

 𝑅𝐶(𝑞𝑚
𝑙 ) = 𝑅𝐶(𝑞𝑚

𝑟 ) = 𝑚 + 1 − 𝑗 

for 𝑗 ≤ 𝑚 ≤ 𝑛𝑝 − 1, 

(3) In case of 𝑅𝐶(𝑝) < 𝑅𝐶(𝑞) Let 𝑗: = 𝑛𝑞 − 𝑛𝑝, then  

 𝑞𝑚
𝑙 : = {𝑄𝑚

𝑙 (𝑥)}, 𝑞𝑚
𝑟 : = {𝑄𝑚

𝑟 (𝑥)}, 𝑝𝑚
𝑙 ⊥𝑤 𝑞𝑚

𝑙 , 𝑝𝑚
𝑟 ⊥𝑤 𝑞𝑚

𝑟  

for 0 ≤ 𝑚 ≤ 𝑛𝑝 − 1. 

 

Note that  

 𝑅𝐶(𝑝𝑚
𝑙 ) = 𝑅𝐶(𝑝𝑚

𝑟 ) = 𝑚 + 1, 𝑅𝐶(𝑞𝑚
𝑙 ) = 𝑅𝐶(𝑞𝑚

𝑟 ) = 𝑚 + 1 + 𝑗, 
for 0 ≤ 𝑚 ≤ 𝑛𝑝 − 1. 

Case 3. 𝐸𝑖
𝑝
-class is divided by 𝑈(𝑥) for some 2 ≤ 𝑖 ≤ 𝑛𝑝 and 𝑈(𝑥) is 

quasirational to the right with respect to the 𝐸𝑖−1
𝑝

-classes. 

An example for the types 𝑞𝑚
𝑟 , 𝑞𝑚

𝑙 , 𝑝𝑚
𝑟 , 𝑝𝑚

𝑙  where m is from interval 𝑛𝑝 − 𝑖 +

1 ≥ 𝑚 ≥ 1 is similar to the case 2a. Suppose 𝑞0
𝑙 : = {𝑄0

𝑙 (𝑥)} and 𝑝0
𝑙 : = {𝑈0

𝑙 (𝑥)}. 

Thus 𝑝0
𝑙 ⊥ 𝑞0

𝑙  and 

 

 𝑅𝐶(𝑝0
𝑙 ) = 𝑅𝐶(𝑞0

𝑙 ) = 𝑖 − 1 

 

So we shown that in any expansion by a unary convex predicate there always exists at 

least one non-algebraic 1-type 𝑝′ ∈ 𝑆1(∅) such that 𝑅𝐶(𝑝′) = 𝑛𝑝, moreover this 

convexity rank is maxiaml.Thus we conclude that 𝑇′ and theory 𝑇ℎ(𝑀) have the 

same convexity ranks. Also note that the (𝑝, 𝑞)-splitting formula (or a (𝑞, 𝑝)-splitting 

formula in case 𝑅𝐶(𝑝) < 𝑅𝐶(𝑞)) for non-weakly orthogonal types 𝑝, 𝑞 is a (𝑝′, 𝑞′)-
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splitting formula for new non-algebraic non-weakly orthogonal types 𝑝′, 𝑞′. And 

finally from the Theorem 2.2 it follows that 𝑇′ is countably categorical.  

   ∎ 

Further, we use the obtained result to study the properties that are preserved 

during the expansions of models of a theory which is quite o-minimal and countably 

categorical by a predicate convex unary. Next is determined: properties that are 

preserved during such expansions are quite o-minimality, countable categoricity, and 

convexity rank. 

 

Lemma 2.10  Let 𝑇 be quite o-minimal countably categorical theory, 𝑀 ⊨ 𝑇, 

non-algebraic one-types 𝑝, 𝑞 ∈ 𝑆1(∅), such that 𝑝 ⊥𝑤 𝑞. Suppose that 𝑀′ is an 

expansion of a model 𝑀 by a unary predicate 𝑈(𝑥) such that 𝑈(𝑀) ⊂ 𝑝(𝑀) and 

𝑈(𝑀)− = 𝑝(𝑀)−. Then 𝑝(𝑀) is partitioned into 𝑠 convex ∅-definable sets in 𝑀′ ⇔ 

𝑞(𝑀) is partitioned into 𝑠 convex ∅-definable sets in 𝑀′.  
 

Proof of Lemma 2.10. As 𝑝 ⊥𝑤 𝑞 then by Theorem 2.2(iii) 𝑅𝐶(𝑝) = 𝑅𝐶(𝑞) 

and there exists ∅-definable function 𝑓: 𝑝(𝑀) → 𝑞(𝑀), which is a locally monotone 

bijection. Let 𝑃(𝑥) be an ∅-definable formula, isolating type 𝑝. Suppose that 𝑃(𝑥) is 

divided into 𝑠 convex ∅-definable formulas 𝑈1(𝑥), … , 𝑈𝑠(𝑥), selecting in 𝑝(𝑀) sets 

which are 1-indiscernible over ∅. Consider the following formulas:  

 

 𝑆𝑖(𝑥): = ∃𝑦[𝑈𝑖(𝑦) ∧ 𝑓(𝑦) = 𝑥],    1 ≤ 𝑖 ≤ 𝑠 

 

It is evident that for each distinct pair 𝑖, 𝑗 with 1 ≤ 𝑖, 𝑗 ≤ 𝑠, as 𝑈𝑖(𝑀) ∩ 𝑈𝑗(𝑀) = ∅, 

we have 𝑆𝑖(𝑀) ∩ 𝑆𝑗(𝑀) = ∅. Due to indiscernibility 𝑈𝑖(𝑀) over ∅ each 𝑆𝑖(𝑀) will 

also be 1-indiscernible.. 

Let 𝑝𝑖: = {𝑈𝑖(𝑥)}, 𝑞𝑖: = {𝑆𝑖(𝑥)} for any 1 ≤ 𝑖 ≤ 𝑠. Then it is clear, that 

𝑝𝑖 ⊥𝑤 𝑞𝑖, 𝑅𝐶(𝑝𝑖) = 𝑅𝐶(𝑞𝑖) and 𝑓: 𝑝𝑖(𝑀′) → 𝑞𝑖(𝑀′) is ∅-definable bijection.         

    ∎ 
Thus taking in consideration Theorem 2.3 we establish the following:  

 

Corollary 2.1 Suppose 𝑀 is a model of theory which is a quite o-minimal and 

countably categorical, and 𝑀′ be an expansion of a model 𝑀 by an arbitrary finite 

family of predicates convex and unary. Then 𝑀′ is a model of theory which is a quite 

o-minimal and countably categorical of the same convexity rank.  
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3 EXPANSIONS OF MODELS BY EQUIVALENCE RELATIONS 

 

The section will examine expansions of countably categorical weakly o-

minimal theories by special case of binary expansions – expansions by equivalence 

relation. 

𝑁 is called an  1-indiscernible structure if for every 𝑐, 𝑑 𝑓𝑟𝑜𝑚 𝑁 

𝑡𝑦𝑝𝑒 𝑜𝑓 𝑐 over empty set equals𝑡𝑦𝑝𝑒 𝑜𝑓 𝑑 over empty set. 
 

Example 3.1 [63, P. 65] Suppose 𝑁𝑚: = 〈ℚ𝑚; <, 𝐸1
2, 𝐸2

2, … , 𝐸𝑚−1
2 〉, where ℚ𝑚 

is the set of 𝑚-tuples 𝑧 = (z, … , 𝑧𝑚−1) of rational numbers, ordered lexicographically 

by <, and suppose for each 𝑘 = 1, … , 𝑚 − 1 the equivalence relation 𝐸𝑘 be given by 

𝐸𝑘(𝑧, 𝑡) iff 𝑧𝑛 = 𝑡𝑛 for any 𝑛 < 𝑚 − 𝑘. Then for every 𝑘 the equivalence classes of 

𝐸𝑘 are convex subsets of ℚ𝑚. Moreover, 𝐸𝑚−1 refines 𝐸𝑘 for every 2 ≤ 𝑘 ≤ 𝑚 − 1.  

 

It can be shown 𝑁𝑚 is an 1-indiscernible countably categorical weakly o-

minimal structure and Theory of Nm has RC(Nm)=𝑚. 

  

Proposition 3.1 [49, P. 354] Suppose 𝑁 is an 1-indiscernible countably 

categorical weakly o-minimal structure of finite convexity rank. Then there is 

𝑚 𝑓𝑟𝑜𝑚 𝜔 that 𝑁 is isomorphic to 𝑁𝑚: = 〈ℚ𝑚; <, 𝐸1
2, 𝐸2

2, … , 𝐸𝑚−1
2 〉 (Example 6.1).  

In this case we examine only the problem of preserving both weak o-

minimality and countable categoricity for expansions of models of 1-indiscernible 

countably categorical weakly o-minimal theories of finite convexity rank by a 

relation of equivalence spliting the universe of the model into infinite number of 

infinite convex classes. 

 

Example 3.2  Suppose 𝑁: = 〈ℚ, <〉 is a linearly ordered structure on the 

rational numbers set ℚ. It is evident 𝑁 is a countably categorical o-minimal structure. 

We expand the model 𝑁 by a new binary relation 𝐸(𝑧, 𝑡) next way: 

suppose 𝑁′: = 〈ℚ, <, 𝐸2〉 is such that for every 𝑐, 𝑓𝑟𝑜𝑚 ℚ and exists 𝑚 𝑓𝑟𝑜𝑚 ℤ : 

 

𝐸(𝑐, 𝑑) iff (2𝑚 − 1)√2 < 𝑐, 𝑑 < (2𝑚 + 1)√2 

 

Then it is easy to understand 𝐸(𝑧, 𝑡) is a relation of equivalence that splits ℚ 

into infinite number of infinite convex classes, and the 𝐸-classes are ordered by the 

type 𝜔∗ + 𝜔. 

It is a routine to show using simple quantifier elimination that 𝑁′ is a weakly o-

minimal structure. It should note that 𝑇ℎ𝑒𝑜𝑟𝑦 𝑜𝑓 𝑁′ is not countably categorical 

because the ordered set of integers is interpretable as 𝑁′/𝐸.  

 

 

Example 3.3   Suppose 𝑁: = 〈ℚ × ℚ, <, 𝐸2〉 is a linearly ordered structure on 

the set ℚ × ℚ, ordered lexicographically. The relation 𝐸(𝑧, 𝑡) is defined next way:  

  𝑓𝑜𝑟  𝑒𝑣𝑒𝑟𝑦   𝑐 = (𝑖1, 𝑚1), 𝑑 = (𝑖2, 𝑚2) ∈ ℚ × ℚ    𝐸(𝑐, 𝑑) 𝑖𝑓𝑓 𝑖1 = 𝑖2. 



44 
 

It is evident 𝐸(𝑧, 𝑡) is a relation of equivalence that splits ℚ × ℚ into infinite number 

of infinite convex classes, and the 𝐸-classes are ordered by the type ℚ. 

We extend the universe ℚ × ℚ of the structure 𝑁 by adding two elements to 

every 𝐸-class, which are the left and the right endpoints of the 𝐸-class. As a result, 

we get a new structure 𝑁′: = 〈𝑁′, <, 𝐸2〉. Consider the reduct of the structure 𝑁′ to the 

structure 𝑁′′: = 〈𝑁′, <〉. It is evident 𝑁′′ is a countably categorical o-minimal 

structure. Its expansion 𝑁′: = 〈𝑁′, <, 𝐸2〉 is a countably categorical linearly ordered 

structure. 

We consider the next formula:  

 

𝜓(𝑧): = ∃𝑡1∃𝑡2[𝑡1 < 𝑧 < 𝑡2  ∧  ∀𝑥∀𝑦(𝑡1 ≤ 𝑥 < 𝑧 ∧ 𝑧 < 𝑦 ≤ 𝑡2 → ¬𝐸(𝑥, 𝑦))] 
 

The formula means that 𝑧 is some 𝐸-class endpoint. It should note that 𝜓(𝑁′) is 

an union of infinite number of convex sets. Thus, 𝑇ℎeory 𝑀′ is not weakly o-

minimal.  

 

Proposition 3.2  Suppose 𝑁 is an 1-indiscernible countably categorical weakly 

o-minimal structure of convexity rank 1, 𝑁′ is an expansion of the model 𝑁 by an 

equivalence relation 𝐸(𝑧, 𝑡) spliting 𝑁 into infinite number of infinite convex classes. 

For 𝑇ℎ𝑒𝑜𝑟𝑦 𝑁′ to be a countably categorical weakly o-minimal theory necessary and 

sufficient condisions are the next statements to hold: 

(1) It exists only finite number of 𝐸-classes having at least one endpoint; 

(2) It exists only finite number of 𝐸-classes having an immediate predecessor 

or an immediate successor in the induced ordering on 𝑁/𝐸. 

 

Proof of the Proposition 3.2. (Necessary condition). We consider the formula 

𝜓(𝑧) from Example 3.3. It is clear that 𝜓(𝑁) is finite. If 𝜓(𝑁) was infinite then it 

would contain an infinite interval because of weak o-minimality, but endpoints of 

infinite convex 𝐸-classes can’t form an infinite interval. Therefore, 𝜓(𝑀) is finite, 

which means that it exists only finite number of 𝐸-classes having at least one 

endpoint. 

Now we prove that condition (2) holds. Assume the contrary: it exists infinite 

number of 𝐸-classes having an immediate predecessor or an immediate successor. 

Case 1. ∀𝑖 (𝑖 < 𝜔) ∃𝑚1(𝑖 ≤ 𝑚1 < 𝜔) it exists a discretely ordered chain of 𝐸-

classes of length 𝑚1. 

Then it exists a model 𝑀′ of the 𝑇ℎ𝑒𝑜𝑟𝑦 𝑁′ by compactness, in which there is 

an infinite discretely ordered chain of 𝐸-classes. We don’t lose generality if suppose 

that such chain is ordered by the type 𝜔. We consider the next formulas:  

 

 𝐹1(𝑧, 𝑡): = 𝐸(𝑧, 𝑡) 

 

 𝐹2(𝑧, 𝑡): = 𝐹1(𝑧, 𝑡) ∨ ∀𝑦(𝑧 ≤ 𝑦 ≤ 𝑡 ∧ ¬𝐹1(𝑧, 𝑦) → 𝐸(𝑦, 𝑡)) 

 … … … 

𝐹𝑚(𝑧, 𝑡): = 𝐹𝑚−1(𝑧, 𝑡) ∨ ∀𝑦(𝑧 ≤ 𝑦 ≤ 𝑡 ∧ ¬𝐹𝑚−1(𝑧, 𝑦) → 𝐸(𝑦, 𝑡)),    𝑚 < 𝜔 
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It should note that 𝐹1(𝑐, 𝑀′) defines the class 𝐸(𝑐, 𝑀′), and 𝐹𝑚(𝑐, 𝑀′) for every 

𝑚 < 𝜔 defines the class 𝐸(𝑐, 𝑀′) and the 𝑚 − 1 𝐸-classes immediately following it. 

Then we obtain that there exists 𝑐 𝑓𝑟𝑜𝑚 𝑀′ such that  

 

 𝐹1(𝑐, 𝑀′) ⊂ 𝐹2(𝑐, 𝑀′) ⊂ ⋯ ⊂ 𝐹𝑚(𝑐, 𝑀′) ⊂ ⋯ 

 

which contradicts countable categoricity of 𝑇ℎ𝑒𝑜𝑟𝑦 𝑁′. 
 Case 2. ∃𝑖 (𝑖 < 𝜔) with a discretely ordered chain of 𝐸-classes of length 𝑖, 

and 𝑖 is maximal with this property.  

At that point ∃ 𝑗 (j< 𝜔) such that 2 ≤ 𝑗 ≤ 𝑛 and there is an infinitely many 

chains of length 𝑗. Thereat ∃𝑐 𝑓𝑟𝑜𝑚 𝑁′ such that 𝐹𝑗(𝑐, 𝑁′) is a union of infinite 

number of convex sets, which controverts weak o-minimality of 𝑇ℎ𝑒𝑜𝑟𝑦 𝑁′. 
(Sufficient condition) According to (1) it exists only finite number of 𝐸-classes 

which have at least one endpoint. Now, each the endpoint is definable in obedience to 

the linear ordering of 𝑁′. According to (2) we can also define using a formula every 

𝐸-class which has an immediate successor or an immediate predecessor, as well as 

possible nonempty intervals between some of these classes (those intervals in which 

𝐸-classes are densely ordered without endpoints); In addition, minimal 𝐸-classes (the 

leftmost 𝐸-class) or maximal 𝐸-classes (the rightmost 𝐸-class) in intervals with dense 

ordering of 𝐸-classes are distinguished. In consequence, we obtain finitely many ∅-

definable formulas ℎ𝑘(𝑧), 1 ≤ 𝑛 ≤ 𝑚, so that for all 1 ≤ 𝑘 < 𝑛 ≤ 𝑚  

 

 ℎ𝑘(𝑁′) ∩ ℎ𝑛(𝑁′) = ∅. 
 

All the formulas define some 1-type over ∅. Using standard methods it is not 

difficult to understand that up to atomic formulas and the formulas 

ℎ1(𝑧), ℎ2(𝑧), … , ℎ𝑚(𝑧) 𝑇ℎeory 𝑁′admits quantifier elimination (the last formulas 

define convex sets in 𝑁′), therefore we get that 𝑇ℎ𝑒𝑜𝑟𝑦 𝑁′ is a countably categorical 

weakly o-minimal theory.               ∎ 

 

Corollary 3.1 Suppose 𝑁 is an 1-indiscernible countably categorical weakly o-

minimal structure of convexity rank 1, 𝑁′ is an expansion of the model 𝑁 using an 

relation of equivalence 𝐸(𝑥, 𝑦) which split 𝑁 into infinite number of infinite convex 

classes. Now for 𝑁′ to be an 1-indiscernible countably categorical weakly o-minimal 

structure necessary and sufficient condisions are : 

(1) All 𝐸-classes have no endpoints in 𝑁′; 
(2) The induced order on 𝐸-classes is a dense linear order without endpoints.  

 

Example 3.4  Suppose 𝑁′: = 〈ℚ, <, 𝐸2〉 is the structure from Example 3.2. We 

replace all points 𝑐 𝑓𝑟𝑜𝑚 ℚ using copy of rational numbers and define a new 

structure 𝑁′′: = 〈ℚ × ℚ, <, 𝐸2, 𝐸0
2〉, in which the relation 𝐸0(𝑧, 𝑡) defines by next 

way:  
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𝐸0(𝑐, 𝑑) 𝑖𝑓 𝑜𝑛𝑙𝑦 𝑖𝑓 𝑖1 = 𝑖2   𝑓𝑜𝑟  𝑎𝑙𝑙   𝑐 = (𝑖1, 𝑚1), 𝑏 = (𝑖2, 𝑚2) ∈ ℚ × ℚ 
 

Now it is easy to show that 𝐸0(𝑧, 𝑡) is a relation of equivalence which splits each 𝐸-

class into infinite number of infinite convex classes that the 𝐸0-subclasses of each 𝐸-

class are densely ordered without endpoints. 

It can be proved that 𝑁′′ is a weakly o-minimal structure, but the 𝑇ℎ𝑒𝑜𝑟𝑦 (𝑁′′) 

is not countably categorical.  

 

Example 3.5  Suppose 𝑁′: = 〈ℚ, <, 𝐸2〉 is ordered by type ℚ countable 

number of copies of the structure from Example 3.2. Now we get a new structure 

𝑁′′: = 〈ℚ × ℚ, < 𝐸2, 𝐸1
2〉, in which the relation 𝐸1(𝑥, 𝑦) is defined by next way:  

 

𝐸1(𝑐, 𝑑) 𝑖𝑓 𝑜𝑛𝑙𝑦 𝑖𝑓 𝑖1 = 𝑖2   𝑓𝑜𝑟  𝑎𝑛𝑦   𝑐 = (𝑖1, 𝑚1), 𝑑 = (𝑖2, 𝑚2) ∈ ℚ × ℚ 

 

At that point 𝐸(𝑐, 𝑁′′) ⊂ 𝐸1(𝑐, 𝑁′′) for all 𝑐 𝑓𝑟𝑜𝑚 𝑁′′ and 𝐸1(𝑧, 𝑡) is a relation of 

equivalence which splits 𝑁′′ into infinite number of infinite convex classes, ordered 

by type ℚ. Observe that 𝐸-subclasses of each 𝐸1-class are ordered by type 𝜔∗ + 𝜔. 

It is also easy to understand that 𝑁′′ is a weakly o-minimal structure, but 

𝑇ℎeory N′′ is not countably categorical.  

 

Theorem 3.1  Suppose 𝑁 is an 1-indiscernible countably categorical weakly o-

minimal structure of convexity rank 𝑚, and 𝐸1(𝑧, 𝑡), 𝐸2(𝑧, 𝑡), …, 𝐸𝑚−1(𝑧, 𝑡) are ∅-

definable relations of equivalence which split 𝑁 into infinite number of infinite 

convex classes, that for all 𝑐 𝑓𝑟𝑜𝑚 𝑁  

 

 𝐸1(𝑐, 𝑁) ⊂ 𝐸2(𝑐, 𝑁) ⊂ ⋯ ⊂ 𝐸𝑚−1(𝑐, 𝑁). 
 

Suppose 𝑁′ is a model   𝑁 expansion using a new relation of equivalence 

𝐸∗(𝑧, 𝑡) splitting 𝑁′ into infinite number of infinite convex classes. Now for 

𝑇ℎ𝑒𝑜𝑟𝑦 𝑁′ to be a countably categorical weakly o-minimal theory necessary and 

sufficient condisions are : 

(A) Only finite number of 𝐸∗-classes having at least one endpoint exist; 

(B) Only finite number of 𝐸∗-classes having an immediate predecessor or an 

immediate successor in the induced ordering on 𝑀/𝐸∗ exist; 

(C) 𝑁′ is splitted into finite number of infinite convex sets 𝑋1, … , 𝑋𝑖 such that 

for each 1 ≤ 𝑘 ≤ 𝑖 exactly one of the next items holds: 

 

(1)𝑠 ∃𝑠 1 ≤ 𝑠 ≤ 𝑚 − 1 that 𝐸∗(𝑐, 𝑁) = 𝐸𝑠(𝑐, 𝑁) for all 𝑐 𝑓𝑟𝑜𝑚 𝑋𝑘; 

 

(2)1 𝐸∗(𝑐, 𝑁) ⊂ 𝐸1(𝑐, 𝑁), s𝑢𝑝 𝐸
∗(𝑐, 𝑁) < s𝑢𝑝 𝐸1(𝑐, 𝑁) and  

 

inf 𝐸1(𝑐, 𝑁) < inf 𝐸∗(𝑐, 𝑁)  for  all   𝑐 𝑓𝑟𝑜𝑚 𝑋𝑘; 
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(2)𝑛+1 ∃𝑛 1 ≤ 𝑛 ≤ 𝑚 − 2 that 𝐸𝑛(𝑐, 𝑁) ⊂ 𝐸∗(𝑐, 𝑁) ⊂ 𝐸𝑛+1(𝑐, 𝑁),  

 

 s𝑢𝑝 𝐸𝑛(𝑐, 𝑁) < s𝑢𝑝 𝐸
∗(𝑐, 𝑁), inf  𝐸𝑛(𝑐, 𝑁) < inf  𝐸∗(𝑐, 𝑁), 

 

s𝑢𝑝 𝐸
∗(𝑐, 𝑁) < s𝑢𝑝 𝐸𝑛+1(𝑐, 𝑁)   𝑎𝑛𝑑  inf  𝐸𝑛+1(𝑐, 𝑁) < inf  𝐸∗(𝑐, 𝑁) 

for all 𝑐 𝑓𝑟𝑜𝑚 𝑋𝑘; 

 

(2)𝑚 𝐸𝑚−1(𝑐, 𝑁) ⊂ 𝐸∗(𝑐, 𝑁), s𝑢𝑝 𝐸𝑚−1(𝑐, 𝑁) < s𝑢𝑝 𝐸
∗(𝑐, 𝑁) and  

 inf  𝐸∗(𝑐, 𝑁) < inf 𝐸𝑚−1(𝑐, 𝑁)  𝑓𝑜𝑟 𝑎𝑙𝑙  𝑐 𝑓𝑟𝑜𝑚 𝑋𝑘; 
 

(3)𝑠 ∃𝑠 1 ≤ 𝑠 ≤ 𝑚 − 1 that 𝑋𝑘 = 𝐸∗(𝑐, 𝑁) for some 𝑐 𝑓𝑟𝑜𝑚 𝑁 𝐸∗(𝑎, 𝑀) ⊂
𝐸𝑠(𝑐, 𝑁) and 

 

𝑒𝑖𝑡ℎ𝑒𝑟   s𝑢𝑝 𝐸
∗(𝑐, 𝑁) = s𝑢𝑝 𝐸𝑠(𝑐, 𝑁)   𝑜𝑟  inf  𝐸∗(𝑐, 𝑁) = inf  𝐸𝑠(𝑐, 𝑁); 

 

(4)𝑠 ∃𝑠 1 ≤ 𝑠 ≤ 𝑚 − 1that 𝑋𝑘 = 𝐸𝑠(𝑐, 𝑁) for some 𝑐 𝑓𝑟𝑜𝑚 𝑁, 𝐸𝑠(𝑐, 𝑁) ⊂
𝐸∗(𝑐, 𝑁) and  

 

 𝑒𝑖𝑡ℎ𝑒𝑟   s𝑢𝑝 𝐸𝑠(𝑐, 𝑁) = s𝑢𝑝 𝐸
∗(𝑐, 𝑁)   𝑜𝑟  inf  𝐸𝑠(𝑐, 𝑁) = inf 𝐸∗(𝑐, 𝑁); 

 

(5)𝑠 ∃𝑠 1 ≤ 𝑠 ≤ 𝑚 − 1 such that 𝑋𝑘 = 𝐸∗(𝑐, 𝑁) ∩ 𝐸𝑠(𝑐, 𝑁) for some 

𝑐 𝑓𝑟𝑜𝑚 𝑁,  

 

𝐸∗(𝑐, 𝑁)\𝐸𝑠(𝑐, 𝑁) ≠ ∅ and 𝐸𝑠(𝑐, 𝑁)\𝐸∗(𝑐, 𝑁) ≠ ∅.  

 

Proof of Theorem 3.1. (𝑁𝑒𝑐𝑒𝑠𝑠𝑎𝑟𝑦 𝑐𝑜𝑛𝑑𝑖𝑠𝑖𝑜𝑛) (A) and (B) ensue from the 

Proposition 3.2 proof. Further, we consider the following formulas for any 1 ≤ 𝑠 ≤
𝑚 − 1 and 1 ≤ 𝑛 ≤ 𝑚 − 2:  

 

 𝜓1𝑠
∅ (𝑧): = ∀𝑡[𝐸𝑠(𝑧, 𝑡) ↔ 𝐸∗(𝑧, 𝑡)] 

 

i.e. 𝜓1𝑠
∅ (𝑧) defines the set of elements 𝑐 𝑓𝑟𝑜𝑚 𝑁 that 𝐸∗(𝑐, 𝑁) = 𝐸𝑠(𝑐, 𝑁).  

 

𝜓21
∅ (𝑧): = ∀𝑡[𝐸∗(𝑧, 𝑡) → 𝐸1(𝑧, 𝑡)] ∧ ∃𝑥1∃𝑥2(𝑥1 < 𝑧 < 𝑥2 ∧ 𝐸1(𝑥1, 𝑥2) ∧ 

 

 ∧ ¬𝐸∗(𝑧1, 𝑧) ∧ ¬𝐸∗(𝑧, 𝑥2))] 
 

i.e. 𝜓21
∅ (𝑧) defines the set of elements 𝑐 𝑓𝑟𝑜𝑚 𝑁 such that 𝐸∗(𝑐, 𝑁) ⊂ 𝐸1(𝑐, 𝑁), 

s𝑢𝑝 𝐸
∗(𝑐, 𝑁) < s𝑢𝑝 𝐸1(𝑐, 𝑁) and inf 𝐸1(𝑐, 𝑁) < inf  𝐸∗(𝑐, 𝑁).  

 

 𝜓2,𝑛+1
∅ (𝑧): = ∀𝑡[(𝐸𝑛(𝑧, 𝑡) → 𝐸∗(𝑧, 𝑡)) ∧ (𝐸∗(𝑧, 𝑡) → 𝐸𝑛+1(𝑧, 𝑡))] ∧ 

 

∧ ∃𝑦1∃𝑥1∃𝑥2∃𝑦2(𝑦1 < 𝑥1 < 𝑧 < 𝑥2 < 𝑦2 ∧ 𝐸𝑛+1(𝑦1, 𝑦2) ∧ 𝐸∗(𝑥1, 𝑥2) ∧ 
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 ∧ ¬𝐸∗(𝑦1, 𝑥1) ∧ ¬𝐸∗(𝑥2, 𝑦2) ∧ ¬𝐸𝑛(𝑥1, 𝑧) ∧ ¬𝐸𝑗(𝑧, 𝑥2))] 

 

i.e. 𝜓2,𝑛+1
∅ (𝑥) defines the set of elements 𝑐 𝑓𝑟𝑜𝑚 𝑁 such that 𝐸𝑛(𝑐, 𝑁) ⊂ 𝐸∗(𝑐, 𝑁) ⊂ 

𝐸𝑛+1(𝑐, 𝑁), s𝑢𝑝 𝐸𝑛(𝑐, 𝑁) < s𝑢𝑝 𝐸
∗(𝑐, 𝑁), inf 𝐸𝑛(𝑐, 𝑁) < inf 𝐸∗(𝑐, 𝑁), s𝑢𝑝 𝐸

∗(𝑐, N) 

< s𝑢𝑝 𝐸𝑛+1(𝑐, 𝑁) and inf  𝐸𝑛+1(𝑐, 𝑁) < inf 𝐸∗(𝑐, 𝑁). 

 

 𝜓2𝑛
∅ (𝑧): = ∀𝑡[𝐸𝑚−1(𝑧, 𝑡) → 𝐸∗(𝑧, 𝑡)] ∧ 

 

 ∧ ∃𝑥1∃𝑥2(𝑥1 < 𝑧 < 𝑥2 ∧ 𝐸∗(𝑥1, 𝑥2) ∧ ¬𝐸𝑚−1(𝑥1, 𝑧) ∧ ¬𝐸𝑚−1(𝑧, 𝑥2)] 
 

i.e. 𝜓2𝑚
∅ (𝑧) defines the set of elements 𝑐 𝑓𝑟𝑜𝑚 𝑁 such that 𝐸𝑚−1(𝑐, 𝑁) ⊂ 𝐸∗(𝑐, 𝑁), 

s𝑢𝑝 𝐸𝑚−1(𝑐, 𝑁) < s𝑢𝑝 𝐸
∗(𝑐, 𝑁) and inf 𝐸∗(𝑐, 𝑁) < inf 𝐸𝑚−1(𝑐, 𝑁).  

 

𝜓3𝑠
𝑟 (𝑧): = ∀𝑡[𝐸∗(𝑧, 𝑡) → 𝐸𝑠(𝑧, 𝑡)] ∧ ∀𝑡1[𝑧 < 𝑡1 ∧ ¬𝐸∗(𝑧, t) → ¬𝐸𝑠(𝑧, 𝑡1)] 

 

i.e. 𝜓3𝑠
𝑟 (𝑧) defines classes 𝐸∗(𝑐, 𝑁) for some element 𝑐 𝑓𝑟𝑜𝑚 𝑁 such that  

 

 𝐸∗(𝑐, 𝑁) ⊂ 𝐸𝑠(𝑐, 𝑁)   𝑎𝑛𝑑   s𝑢𝑝 𝐸
∗(𝑐, 𝑁) = s𝑢𝑝 𝐸𝑠(𝑐, 𝑁). 

 

𝜓3𝑠
𝑙 (𝑧): = ∀𝑡[𝐸∗(𝑧, 𝑡) → 𝐸𝑠(𝑧, 𝑡)] ∧ ∀𝑡1[𝑧 > 𝑡1 ∧ ¬𝐸∗(𝑧, 𝑡1) → ¬𝐸𝑠(𝑧, 𝑡1)] 

 

i.e. 𝜓3𝑠
𝑙 (𝑧) defines classes 𝐸∗(𝑐, 𝑁) for some element 𝑐 𝑓𝑟𝑜𝑚 𝑁 such that  

 

 𝐸∗(𝑐, 𝑁) ⊂ 𝐸𝑠(𝑐, 𝑁)   𝑎𝑛𝑑   inf 𝐸∗(𝑐, 𝑁) = inf 𝐸𝑠(𝑐, 𝑁). 
 

𝜓4𝑠
𝑟 (𝑧): = ∀𝑡[𝐸𝑠(𝑧, 𝑡) → 𝐸∗(𝑧, 𝑡)] ∧ ∀𝑡1[𝑧 < 𝑡1 ∧ ¬𝐸𝑠(𝑧, 𝑡1) → ¬𝐸∗(𝑧, 𝑡1)] 

 

i.e. 𝜓4𝑠
𝑟 (𝑧) defines an 𝐸𝑠(𝑐, 𝑁)-classes for an element 𝑐 𝑓𝑟𝑜𝑚 𝑁 that  

 

 𝐸𝑠(𝑐, 𝑁) ⊂ 𝐸∗(𝑐, 𝑁)   𝑎𝑛𝑑   s𝑢𝑝 𝐸𝑠(𝑐, 𝑁) = s𝑢𝑝 𝐸
∗(𝑐, 𝑁). 

 

𝜓4𝑠
𝑙 (𝑧): = ∀𝑡[𝐸𝑠(𝑧, 𝑡) → 𝐸∗(𝑧, 𝑡)] ∧ ∀𝑡1[𝑧 > 𝑡1 ∧ ¬𝐸𝑠(𝑧, 𝑡1) → ¬𝐸∗(𝑧, 𝑡1)] 

i.e. 𝜓4𝑠
𝑙 (𝑧) defines an 𝐸𝑠(𝑐, 𝑁)-classes for an element 𝑐 𝑓𝑟𝑜𝑚 𝑁 that  

 

 𝐸𝑠(𝑐, 𝑁) ⊂ 𝐸∗(𝑐, 𝑁)   𝑎𝑛𝑑   inf 𝐸𝑠(𝑐, 𝑁) = inf 𝐸∗(𝑐, 𝑁). 
 

 𝜓5𝑠
𝑟 (𝑧): = ∃𝑡1∃𝑡2[𝑡1 < 𝑧 < 𝑡2 ∧ 𝐸𝑠(𝑡1, 𝑧) ∧ 𝐸∗(𝑧, 𝑡2) ∧ ¬𝐸𝑠(𝑧, 𝑡2) ∧

¬𝐸∗(𝑡1, 𝑧)] 
 

i.e. 𝜓5𝑠
𝑟 (𝑧) defines non-empty intersections 𝐸∗(𝑐, 𝑁) ∩ 𝐸𝑠(𝑐, 𝑁) for some 𝑐 𝑓𝑟𝑜𝑚 𝑁 

that there exist 𝑑1 ∈ 𝐸𝑠(𝑐, 𝑁)\𝐸∗(𝑐, 𝑁) and 𝑑2 ∈ 𝐸∗(𝑐, 𝑁)\𝐸𝑠(𝑐, 𝑁) where 𝑑1 < 𝑑2.  
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 𝜓5𝑠
𝑙 (𝑧): = ∃𝑡1∃𝑡2[𝑡1 < 𝑧 < 𝑡2 ∧ 𝐸∗(𝑡1, 𝑧) ∧ 𝐸𝑠(𝑧, 𝑡2) ∧ ¬𝐸∗(𝑧, 𝑡2) ∧

¬𝐸𝑠(𝑡1, 𝑧)] 
 

i.e. 𝜓5𝑠
𝑙 (𝑥) defines non-empty intersections 𝐸∗(𝑐, 𝑁) ∩ 𝐸𝑠(𝑐, 𝑁) for some 𝑐 𝑓𝑟𝑜𝑚 𝑁 

such that there exist 𝑑1 𝑓𝑟𝑜𝑚 𝐸𝑠(𝑐, 𝑁)\𝐸∗(𝑐, 𝑁) and 𝑑2 𝑓𝑟𝑜𝑚 𝐸∗(𝑐, 𝑁)\𝐸𝑠(𝑐, 𝑁) 

with 𝑑1 > 𝑑2. 

We can understand that for all 𝑐 𝑓𝑟𝑜𝑚 𝑁′ there exist 𝑘, 𝑠, 𝜀 such that 1 ≤ 𝑘 ≤
5, 1 ≤ 𝑠 ≤ 𝑚 − 1, 𝜀 from {∅, 𝑟, 𝑙} and 𝑁′ ⊨ 𝜓𝑖𝑠

𝜀 (𝑐), and also that  

 

 𝑁′ ⊨ ¬∃𝑧[𝜓𝑘𝑠
𝜀1(𝑧) ∧ 𝜓𝑛𝑗

𝜀2(𝑧)] 

 

for all single 𝑘, 𝑛, 𝑠, 𝑗, 𝜀1, 𝜀2 that 1 ≤ 𝑘, 𝑛 ≤ 5, 1 ≤ 𝑠, 𝑗 ≤ 𝑚 − 1, 𝜀1, 𝜀2 𝑓𝑟𝑜𝑚 {∅, 𝑟, 𝑙} 

provided that 𝑘 ≠ 𝑛, 𝑠 ≠ 𝑗 or 𝜀1 ≠ 𝜀2. 

In accodance with weak o-minimality of 𝑇ℎ𝑒𝑜𝑟𝑦 𝑁′, each of these formulas 

defines a set that is the union of finitely many convex sets, which implies (C). 

(𝑆𝑢𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑐𝑜𝑛𝑑𝑖𝑠𝑖𝑜𝑛) In obedience to the proof of Proposition 6.2 

performance of (A) and (B) conditions define using a formula the available endpoints 

of 𝐸-classes; any 𝐸-class, which has an immediate successor or an immediate 

predecessor, as well as gaps where 𝐸-classes are densely ordered without endpoints; 

in addition, minimal or maximal 𝐸-classes are distinguished in the intervals of dense 

ordering of 𝐸-classes having the leftmost or rightmost 𝐸-class. Therefore, we obtain 

finitely many ∅-definable formulas ℎ𝑘(𝑧),1 ≤ 𝑛 ≤ 𝑚, that for each 1 ≤ 𝑘 < 𝑛 ≤ 𝑚  

 

 ℎ𝑘(𝑁′) ∩ ℎ𝑛(𝑁′) = ∅. 
 

The performance of condition (C) provides that any formulas 𝜓𝑘𝑠
𝜀 (𝑧), 1 ≤ 𝑘 ≤ 6, 

1 ≤ 𝑠 ≤ 𝑚 − 1, 𝜀 𝑓𝑟𝑜𝑚 {∅, 𝑟, 𝑙}, defines a set that is the union of finitely many 

convex sets. Then by linear ordering of 𝑁′ all formulas 𝜓𝑖𝑠
𝜀 (𝑧) decomposes into 

finitely many convex ∅-definable formulas 𝜓𝑘𝑠
𝜀1(𝑧), 𝜓𝑘𝑠

𝜀2(𝑧), … , 𝜓𝑘𝑠

𝜀𝑚𝑘𝑠
𝜀

(𝑧) for some 

𝑚𝑘𝑠
𝜀 < 𝜔. 

It is clear that there exist only finite nuber of 𝐸∗-classes (and, therefore, ∃𝑠 

1 ≤ 𝑠 ≤ 𝑚 − 1 ∶  𝐸𝑠-classes) defined by next formulas:  

 

 𝜓6𝑠
𝑟 (𝑧): = ∃𝑥(𝑧 < 𝑥 ∧ ¬𝐸𝑠(𝑧, 𝑥) ∧ ∀𝑦1(𝐸∗(𝑥, 𝑦1) → ¬𝐸𝑠(𝑧, 𝑦1)) ∧ 

 

∧ ∀𝑦2(𝐸𝑠(𝑧, 𝑦2) → ¬𝐸∗(𝑥, 𝑦2)) ∧ ∀𝑣[𝑧 ≤ 𝑣 ≤ 𝑥 → 𝐸𝑠(𝑧, 𝑣) ∨ 𝐸∗(𝑣, 𝑥)]) 

 

i.e. 𝜓6𝑠
𝑟 (𝑧) defines classes 𝐸𝑠(𝑐, 𝑁) for some 𝑐 𝑓𝑟𝑜𝑚 𝑁 which are immediately 

followed by an 𝐸∗-class.  

 

 𝜓6𝑠
𝑙 (𝑧): = ∃𝑥(𝑧 < 𝑥 ∧ ¬𝐸∗(𝑧, 𝑥) ∧ ∀𝑦1(𝐸𝑠(𝑥, 𝑦1) → ¬𝐸∗(𝑧, 𝑦1)) ∧ 

 

∧ ∀𝑦2(𝐸∗(𝑧, 𝑦2) → ¬𝐸𝑠(𝑥, 𝑦2)) ∧ ∀𝑣[𝑧 ≤ 𝑣 ≤ 𝑥 → 𝐸∗(𝑧, 𝑣) ∨ 𝐸𝑠(𝑣, 𝑥)]) 



50 
 

 

i.e. 𝜓6𝑠
𝑟 (𝑧) defines classes 𝐸∗(𝑐, 𝑁) for some 𝑐 𝑓𝑟𝑜𝑚 𝑁 which are immediately 

followed by an 𝐸𝑠-class. 

Suppose opposite: there exist infinitely many 𝐸∗-classes and 𝐸𝑠-classes defined 

by the formula 𝜓6𝑠
𝑙 (𝑧). Then we sate that 𝜓6𝑠

𝑙 (𝑁′) is the union of infinitely many 

disjoint convex sets. Actually, if 𝑑 𝑓𝑟𝑜𝑚 𝜓6𝑠
𝑙 (N′), then there exists 𝑐 𝑓𝑟𝑜𝑚 𝑁′ such 

that  

 

 𝐸∗(𝑐, 𝑁′) ∩ 𝐸𝑠(𝑐, 𝑁) = ∅ 
 

and 𝑑 < 𝑐. As far as the condition (B) holds, we have that it exists an infinite convex 

part of 𝐸𝑠(𝑐, 𝑁′) satisfying the formula 𝜓2𝑠
∅ (𝑧), whence 𝜓2𝑠

∅ (𝑁′) is the union of 

infinitely many disjoint convex sets, but it contradicts the condition (C). 

At the end, it easy to proved using standard methods that 𝑇ℎeory N′ accepts 

quantifier elimination up to atomic formulas and formulas  

ℎ1(𝑧), ℎ2(𝑧), … , ℎ𝑚(𝑧), 𝜓11
𝜀1(𝑧), …, 𝜓1,𝑚−1

𝜀𝑚1,𝑚−1
𝜀1

(𝑧); … ; 𝜓51
𝜀1(𝑧), … , 𝜓5,𝑚−1

𝜀𝑚5,𝑚−1
𝜀

(𝑧),  

 

from which we have 𝑇ℎeory N′ is a countably categorical weakly o-minimal 

theory.       ∎ 

 

Corollary 3.2 Suppose 𝑁 is an 1-indiscernible countably categorical weakly o-

minimal structure of convexity rank 𝑛, and 𝐸1(𝑧, 𝑡), 𝐸2(𝑧, 𝑡), … , 𝐸𝑚−1(𝑧, 𝑡) are ∅-

definable equivalence relations splitting 𝑁 into an infinite number of infinite convex 

classes, such that for all c from N  

 

 𝐸1(𝑐, 𝑁) ⊂ 𝐸2(𝑐, 𝑁) ⊂ ⋯ ⊂ 𝐸𝑚−1(𝑐, 𝑁). 
 

Suppose N′ is model 𝑀 expansion by a new relation of equivalence 𝐸∗(𝑧, 𝑡) which 

splits 𝑁′ into infinite number of infinite convex classes. Thereat for N′ to be an 1-

indiscernible countably categorical weakly o-minimal structure necessary and 

sufficient condisions are: 

(𝐴) every 𝐸∗-class has not endpoints in 𝑁′; 
(𝐵) the induced order on 𝐸∗-classes is a dense linear order without endpoints; 

(𝐶) for all c from N′ exactly one of the following 2𝑚 − 1 items holds: 

 

(1)𝑠 ∃𝑠 (1 ≤ 𝑠 ≤ 𝑚 − 1) that 𝐸∗(𝑐, 𝑁) = 𝐸𝑠(𝑐, 𝑁); 

 

(2)1 𝐸∗(𝑐, 𝑁) ⊂ 𝐸1(𝑐, 𝑁), s𝑢𝑝 𝐸
∗(𝑐, 𝑁) < s𝑢𝑝 𝐸1(𝑐, 𝑁) and  

 inf 𝐸1(𝑐, 𝑁) < inf 𝐸∗(𝑐, 𝑁); 
 

(2)𝑛+1 ∃𝑛 1 ≤ 𝑛 ≤ 𝑚 − 2 that 𝐸𝑛(𝑐, 𝑁) ⊂ 𝐸∗(𝑐, 𝑁) ⊂ 𝐸𝑛+1(𝑐, 𝑁),  

 s𝑢𝑝 𝐸𝑛(𝑐, 𝑁) < s𝑢𝑝 𝐸
∗(𝑐, 𝑁), inf 𝐸𝑛(𝑐, 𝑁) < inf 𝐸∗(𝑐, 𝑁), 
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 s𝑢𝑝 𝐸
∗(𝑐, 𝑁) < s𝑢𝑝 𝐸𝑛+1(𝑐, 𝑁)   𝑎𝑛𝑑   inf 𝐸𝑛+1(𝑐, 𝑁) < inf  𝐸∗(𝑐, 𝑁); 

 

(2)𝑚 𝐸𝑚−1(𝑐, 𝑁) ⊂ 𝐸∗(𝑐, 𝑁), s𝑢𝑝 𝐸𝑚−1(𝑐, 𝑁) < s𝑢𝑝 𝐸
∗(𝑐, 𝑁) and  

 

 inf 𝐸∗(𝑐, 𝑁) < inf 𝐸𝑚−1(𝑐, 𝑁). 
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4 EXPANSIONS OF MODELS BY ARBITRARY BINARY 

PREDICATES 

 

The section is devoted to investigation of the question of properties 

preservation when expanding models of countably categorical weakly ordered-

minimal theories by arbitrary binary predicates. Earlier we have studied the problem 

of preserving properties for expansions of models of countably categorical weakly o-

minimal theories by unary predicates. As it is known, in work [8, P. 1382] B.S. 

Baizhanov proved that the expansion of a model of a weakly o-minimal theory by a 

unary predicate that distinguishes a finite number of convex sets preserves weak o-

minimality of the expanded theory. However, in the case of expanding a model of a 

weakly o-minimal theory by a binary predicate that distinguishes a finite number of 

convex sets for each fixed both the first and the second parameter, the expanded 

theory can lose weak o-minimality (Example 4.1).) 

 

Example 4.1 Suppose 𝑁: = 〈ℝ, <〉 is a linearly ordered structure on the set of 

real numbers ℝ. It is evident that 𝑁 is a model of a countably categorical o-minimal 

theory. We expand the model 𝑁 by a new binary relation 𝑆(𝑧, 𝑡) next way: suppose 

𝑁′: = 〈ℝ, <, 𝑆2〉 be such that 𝑆(𝑧, 𝑡) is the graph of the next unary function 𝑓, defined 

as 𝑓(𝑑) = 2𝑑 for every d from ℚ and 𝑓(𝑎) = −𝑎 for every 𝑎 𝑓𝑟𝑜𝑚 ℝ\ℚ. It is 

evident that 𝑆(𝑐, 𝑁) and 𝑆(𝑁, 𝑐) for every 𝑐 𝑓𝑟𝑜𝑚 𝑁 are singleton sets, i.e. convex 

sets. However, notice that 𝑁′ is not weakly o-minimal, so far as there is no partition 

of the set ℝ into a finitely many convex sets, on each of which the definable function 

𝑓 is locally constant or locally monotone. 

Example 4.2 Suppose 𝑁: = 〈ℚ, <〉 is a linearly ordered structure on the set of 

rational numbers ℚ. It is evident that 𝑁 is countably categorical 1-indiscernible o-

minimal structure. Consider a binary predicate 𝑅(𝑧, 𝑡) expansion of a structure 𝑁: 

denote as 𝑁′: = 〈ℚ, <, 𝑅2〉 that for all 𝑐, 𝑑 𝑓𝑟𝑜𝑚 ℚ  

 

 𝑅(𝑐, 𝑑) ⇔ 𝑐 ≤ 𝑑 < 𝑐 + √2. 
 

We understand that 𝑅(𝑐, 𝑁′) and 𝑅(𝑁′, 𝑐) are convex for all 𝑐 𝑓𝑟𝑜𝑚 𝑁′. It easy to 

prove that 𝑁′ is weakly o-minimal 1-indiscernible structure. 

The formula 𝐹(𝑧, t): = 𝑅(𝑡, 𝑧) is convex to the right 𝑝-stable, where  

 

 𝑝(𝑧): = {𝑧 = 𝑧} ∈ 𝑆1(∅). 
 

It is obvious that the formula 𝐹(𝑧, 𝑡) doesn’t generate equivalence. 

Study next formulas:  

 

 𝑅2(𝑧, 𝑡): = ∃𝑦[𝑅(𝑧, 𝑦) ∧ 𝑅(𝑦, 𝑡)], 
 

 𝑅𝑚(𝑧, 𝑡): = ∃𝑦[𝑅𝑚−1(𝑧, 𝑦) ∧ 𝑅(𝑦, 𝑡)], 𝑚 ≥ 2 
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For every 𝑐 𝑓𝑟𝑜𝑚 𝑁′ we got 

 

 𝑅(𝑐, 𝑁′) ⊂ 𝑅2(𝑐, 𝑁′) ⊂ ⋯ ⊂ 𝑅𝑛(𝑐, 𝑁′) ⊂ ⋯, 
 

It means that 𝑇ℎeoty N′ is not countably categorical. 

 

Suppose 𝑁 is a weakly o-minimal structure, 𝐶 ⊆ 𝑁, a non-algebraic type 

𝑝 ∈ 𝑆1(𝐶), an 𝐶-definable formula 𝑅(𝑧, 𝑡), that is 𝑝-preserving, that is for all c from 

𝑝(𝑀) there exist elements 𝑑1, 𝑑2 𝑓𝑟𝑜𝑚 𝑝(𝑀) that the next holds 𝑑1 < 𝑅(𝑁, 𝑐) < 𝑑2. 

Owing to the weak o-minimality of 𝑀 the set 𝑅(𝑁, 𝑐) composes of a union of 

convex sets, whose quantity is finite. It is evident that every single of sets mentioned 

is 𝐶 ∪ {𝑐}-definable. To the left of element 𝑎 there is a finite quantity of such 

definable convex sets. Signify them as 𝑅1
𝑙 (𝑧, 𝑡), … , 𝑅𝑠

𝑙 (𝑧, 𝑡), in the following way  

 

 𝑅𝑠
𝑙 (𝑁, 𝑐) > 𝑅𝑠−1

𝑙 (𝑁, 𝑐) > ⋯ > 𝑅1
𝑙 (𝑁, 𝑐) ≥ 𝑐. 

 

In the same way to the right of element 𝑎 there is a finite quantity of such definable 

convex sets. Signify them as 𝑅1
𝑟(𝑧, 𝑡), …, 𝑅𝑖

𝑟(𝑧, 𝑡), in the following way  

 

 𝑐 ≤ 𝑅1
𝑟(𝑁, 𝑐) < 𝑅2

𝑟(𝑁, 𝑐) < ⋯ < 𝑅𝑖
𝑟(𝑁, 𝑐). 

 

In the event that definable convex set has an element 𝑐. Denote the set as 𝑅𝑎(𝑧, 𝑡). 

Thereby if 𝑅𝑎(𝑁, 𝑐) ≠ ∅, then ∃ 𝑑1, 𝑑2𝑓𝑟𝑜𝑚 𝑅𝑎(𝑁, 𝑐) so that 𝑑1 < 𝑐 < 𝑑2. 

Determine next formulas:  

 

 𝐹𝑎(𝑧, 𝑡): = 𝑡 ≤ 𝑧 ∧ 𝑅𝑎(𝑧, 𝑡) 

 

 𝐺𝑎(𝑧, 𝑡): = 𝑡 ≥ 𝑧 ∧ 𝑅𝑎(𝑧, 𝑡) 

 

 𝐹𝑘
𝑟(𝑧, 𝑡): = 𝑡 ≤ 𝑧 ∧ ∀𝑦[𝑅𝑘

𝑟(𝑦, 𝑡) → 𝑧 < 𝑦],1 ≤ 𝑘 ≤ 𝑖 
 

 𝐹𝑘
𝑟∗(𝑧, 𝑡): = 𝑡 ≤ 𝑧 ∧ ∃𝑦[𝑅𝑘

𝑟(𝑦, 𝑡) ∧ 𝑧 ≤ 𝑦],1 ≤ 𝑘 ≤ 𝑖 
 

 𝐺𝑛
𝑙 (𝑧, 𝑡): = 𝑡 ≥ 𝑧 ∧ ∀𝑦[𝑅𝑛

𝑙 (𝑦, 𝑡) → 𝑦 < 𝑧],1 ≤ 𝑘 ≤ 𝑠 

 

 𝐺𝑛
𝑙∗(𝑧, 𝑡): = 𝑡 ≥ 𝑧 ∧ ∃𝑦[𝑅𝑛

𝑙 (𝑦, 𝑡) ∧ 𝑦 ≤ 𝑧],1 ≤ 𝑘 ≤ 𝑠 

 

It is evident that the formulas 𝐹𝑎(𝑧, 𝑡), 𝐹𝑘
𝑟(𝑧, 𝑡), 𝐹𝑘

𝑟∗(𝑧, 𝑡),1 ≤ 𝑘 ≤ 𝑖, are convex to 

the right 𝑝-stable and formulas 𝐺𝑎(𝑧, 𝑡), 𝐺𝑛
𝑙 (𝑧, 𝑡), 𝐺𝑛

𝑙∗(𝑧, 𝑡),1 ≤ 𝑛 ≤ 𝑠 are convex to 

the left 𝑝-stable. 

A formula 𝑅(𝑧, 𝑡) is said to be equivalence generated, if all nontrivial formulas 

from the set  

Δ: = {𝐹𝑎(𝑧, 𝑡), 𝐹𝑘
𝑟(𝑧, 𝑡), 𝐹𝑘

𝑟∗(𝑧, 𝑡), 𝐺𝑎(𝑧, 𝑡), 𝐺𝑛
𝑙 (𝑧, 𝑡), 𝐺𝑛

𝑙∗(𝑧, 𝑡)|1 ≤ 𝑘 ≤ 𝑖, 1 ≤
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𝑛 ≤ 𝑠}  

 

are equivalence generating formulas. 

 

Example 4.3 Suppose 𝑁: = 〈ℚ × ℚ, <〉 is a linearly ordered structure on the 

set ℚ × ℚ, ordered lexicographically. It is evident that 𝑁 is countably categorical o-

minimal structure. 

Represent the next binary formulas 𝐸(𝑧, 𝑡) and 𝑅1(𝑧, 𝑡) on the set ℚ × ℚ: for 

all 𝑐 = (𝑖1, 𝑚1), 𝑑 = (𝑖2, 𝑚2) ∈ ℚ × ℚ  

 

 𝐸(𝑐, 𝑑) 𝑖𝑓𝑓 𝑖1 = 𝑖2 

 

 𝑅1(𝑐, 𝑑)  𝑖𝑓𝑓 𝑖1 = 𝑖2 ∧ 𝑚1 ≤ 𝑚2 < 𝑚1 + √2 

Suppose  

 𝑅(𝑧, 𝑡): = 𝑡 ≤ 𝑧 ∧ 𝐸(𝑧, 𝑡) ∧ ¬𝑅1(𝑧, 𝑡) 

 

and 𝑁′: = 〈ℚ × ℚ, <, 𝑅2〉 is an expansion of model 𝑀 using binary predicate 𝑅(𝑧, 𝑡). 

It is evident that for all 𝑐 𝑓𝑟𝑜𝑚 𝑁′ 𝑅(𝑁′, 𝑐) is convex and 𝑐 < 𝑅(𝑁′, 𝑐). 

It easy to understand that 𝑁′ is 1-indiscernible weakly o-minimal structure, 

nevertheless 𝑇ℎeory N′ is not countably categorical theory. 

Examine the next formulas:  

 

 𝐹1(𝑧, 𝑡): = 𝑡 ≤ 𝑧 ∧ ∀𝑦[𝑅(𝑦, 𝑡) → 𝑧 < 𝑦] 
 

 𝐹2(𝑧, 𝑡): = 𝑡 ≤ 𝑧 ∧ ∃𝑦[𝑅(𝑦, 𝑡) ∧ 𝑧 ≤ 𝑦] 
 

The formulas 𝐹1(𝑧, 𝑡), 𝐹2(𝑧, 𝑡) are 𝑝-stable convex to the right, where  

 

 𝑝(𝑧): = {𝑧 = 𝑧} ∈ 𝑆1(∅), 
 

𝐹2(𝑧, 𝑡) is equivalence-generating, and 𝐹1(𝑧, 𝑡) is not equivalence-generating. 

Therefore the predicate 𝑅(𝑧, 𝑡) is not equivalence-generating predicate. 

 

Theorem 4.1 Suppose N is 1-indiscernible countably categorical weakly o-

minimal structure of convexity rank 1, 𝑁′ is 1-indiscernible weakly o-minimal 

expansion of a structure 𝑁 using binary predicate 𝑅(𝑧, 𝑡).  

Thereat for 𝑇ℎ𝑒𝑜𝑟𝑦 𝑁′ to be countably categorical necessary and sufficient 

condisions is thefulfillment next properties: 

(1) 𝑅(𝑧, 𝑡) and 𝐿(𝑧, 𝑡): = 𝑅(𝑡, 𝑧) is equivalence generated; 

(2) For each empty definable equivalence relation 𝐸(𝑧, 𝑡), generated by a 

predicate 𝑅(𝑧, 𝑡), the set of 𝐸-classes is ordered densely. 

 

Proof of Theorem 4.1. (Necessary condision). Let 𝑇ℎ𝑒𝑜𝑟𝑦 𝑁′ be countably 

categorical theory. Examine a predicate 𝑅(𝑧, 𝑡). Through weak o-minimality of the 
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structure 𝑁′ for every 𝑐 𝑓𝑟𝑜𝑚 𝑁′ 𝑅(𝑁′, 𝑐) and 𝑅(𝑐, 𝑁′) are a union finite quantity of 

convex sets. According to Proposition 2.2 both formulas 𝑅(𝑧, 𝑡) and 𝐿(𝑧, 𝑡) must be 

equivalence-generated. 

Suppose 𝐸(𝑧, 𝑡) is a random empty definable equivalence relation. Through 1-

indiscernibility the set of 𝐸-classes must be either densely ordered without endpoints, 

or discretely ordered without endpoints. Hence, by countable categoricity, the set of 

𝐸-classes must be densely ordered. 

(Sufficient condisions). Suppose 𝑅(𝑧, 𝑡) and 𝐿(𝑧, 𝑡) are formulas generated 

equivalence. Examine 𝐸∗(𝑧, 𝑡) a random ∅-definable equivalence relation, generated 

by a predicate 𝑅(𝑧, 𝑡). In accordance with condition, the set of 𝐸∗-classes is densely 

ordered. Through 1-indiscernibility there is neither the leftmost 𝐸∗-class, neither 

rightmost 𝐸∗-class. Also through 1-indiscernibility there doesn’t exist 𝐸∗-class, 

having at least one endpoint (if every 𝐸∗-class would have at least one endpoint, then 

we would get contradiction to weak o-minimality of 𝑁′). 
Through the weak o-minimality of a structure 𝑁′ for all elements 𝑐 𝑓𝑟𝑜𝑚 𝑁′ 

the sets 𝑅(𝑁′, 𝑐) and 𝑅(𝑐, 𝑁′) are unions of finite quantity of convex sets. Hence, it 

exists only a finite quantity of formulas of the form 𝐹𝑎(𝑧, 𝑡), 𝐹𝑘
𝑟(𝑧, 𝑡), 𝐹𝑘

𝑟∗(𝑧, 𝑡), 

𝐺𝑎(𝑧, 𝑡), 𝐺𝑛
𝑙 (𝑧, 𝑡), 𝐺𝑛

𝑙∗(𝑧, 𝑡), 1 ≤ 𝑘 ≤ 𝑚1, 1 ≤ 𝑛 ≤ 𝑚2 for some 𝑚1, 𝑚2 < 𝜔. As in 

accordance with the condition 𝑅(𝑧, 𝑡), 𝐿(𝑧, 𝑡) are equivalence generated formulas, 

then every non-trivial formula from next:  

 

 Δ: = {𝐹𝑎(𝑧, 𝑡), 𝐹𝑘
𝑟(𝑧, 𝑡), 𝐹𝑘

𝑟∗(𝑧, 𝑡), 𝐺𝑎(𝑧, 𝑡), 𝐺𝑛
𝑙 (𝑧, 𝑡), 

 

 𝐺𝑛
𝑙∗(𝑧, 𝑡)|1 ≤ 𝑘 ≤ 𝑚1, 1 ≤ 𝑛 ≤ 𝑚2} 

 

generates an equivalence relation. Thereby we get only finite quantity of ∅-definable 

equivalence relations, generated by predicate 𝑅(𝑧, 𝑡). 

Suppose {𝐸1(𝑧, 𝑡), 𝐸2(𝑧, 𝑡), … , 𝐸𝑛(𝑧, 𝑡)} are a complete set of ∅-definable 

equivalence relations, generated by predicate 𝑅(𝑧, 𝑡). Through 1-indiscernibility there 

don’t exist 𝑘, 𝑛 such that 𝑘 ≠ 𝑛, 1 ≤ 𝑘, 𝑛 ≤ 𝑚 and for some 𝑐 𝑓𝑟𝑜𝑚 𝑁′ 𝐸𝑘(𝑎, 𝑀′) ⊂
𝐸𝑛(𝑐, 𝑁′),  

 

 s𝑢𝑝 𝐸𝑘(𝑐, 𝑁′) = s𝑢𝑝 𝐸𝑛(𝑐, 𝑁′)   𝑜𝑟   inf 𝐸𝑘(𝑐, 𝑁′) = inf 𝐸𝑛(𝑐, 𝑁′). 
 

Also there don’t exist 𝑘, 𝑛 𝑓𝑟𝑜𝑚 {1, … , 𝑚} such that for some 𝑐 𝑓𝑟𝑜𝑚 𝑁′  
 

 𝐸𝑘(𝑐, 𝑁′)\𝐸𝑛(𝑐, 𝑁′) ≠ ∅   𝑎𝑛𝑑   𝐸𝑛(𝑐, 𝑁′)\𝐸𝑘(𝑐, 𝑁′) ≠ ∅. 
 

Onward for some 1 ≤ 𝑘, 𝑛 ≤ 𝑚 if there is 𝑐 𝑓𝑟𝑜𝑚 𝑁′ such that 𝐸𝑘(𝑐, 𝑁′) ⊆
𝐸𝑛(𝑐, 𝑁′), then for all 𝑐 𝑓𝑟𝑜𝑚 𝑁′ 𝐸𝑘(𝑐, 𝑁′) ⊆ 𝐸𝑛(𝑐, 𝑁′). Thereby it exists 1 ≤ 𝑖 ≤ 𝑚 

(possible situation when for some 𝑘, 𝑛 𝑓𝑟𝑜𝑚 {1, … 𝑚} 𝐸𝑘(𝑐, 𝑁′) = 𝐸𝑛(𝑐, 𝑁′)) and 

perhaps some renumbering of the existing equivalence relations so that for all 

𝑐 𝑓𝑟𝑜𝑚 𝑁′ we would have  
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 𝐸1(𝑐, 𝑁′) ⊂ 𝐸2(𝑐, 𝑁′) ⊂ ⋯ ⊂ 𝐸𝑖(𝑐, 𝑁′). 
 

As far as, in accordance with condition, the set of 𝐸-classes is densely ordered for 

each ∅-definable equivalence relation 𝐸(𝑧, 𝑡), then 𝐸𝑘-subclasses of every 𝐸𝑘+1-class 

are densely ordered without endpoints, where 0 ≤ 𝑘 ≤ 𝑖 and  

 

 𝐸0(𝑧, 𝑡): = 𝑧 = 𝑡,    𝐸𝑖+1(𝑧, 𝑡): = 𝑧 = 𝑧 ∧ 𝑡 = 𝑡. 
 

Onward we can establish using standard methods, that 𝑇ℎ𝑒𝑜𝑟𝑦 𝑁′ accepts quantifier 

elimination up to atomic formulas and formulas 𝐸𝑘(𝑧, 𝑡), 1 ≤ 𝑘 ≤ 𝑖, where do we get 

that 𝑇ℎ𝑒𝑜𝑟𝑦 𝑁′ is countably categorical. 

 

Example 4.4 shows, that there exists an expansion by binary predicate, that 

preserves weakly o-minimality but doesn’t preserve countable categoricity. 

 

Example 4.4  Consider a structure 𝑀: = 〈𝑀, <, 𝑃1, 𝑓1〉 that is linearly ordered, 

the universe is defined as following 𝑀 = 𝑃(𝑀) ∪ ¬𝑃(𝑀), 𝑃(𝑀) < ¬𝑃(𝑀), where 

𝑃(𝑀) and ¬𝑃(𝑀) are matched with ℚ and have the same order as ℚ, where ℚ is a 

set of rational numbers. To distinguish the elements of these sets, for any element 

𝑎 ∈ 𝑃(𝑀) denote its identical element in ¬𝑃(𝑀) as 𝑎′.  
An unary function with D𝑜𝑚 (𝑓) = 𝑃(𝑀) and R𝑎𝑛𝑔𝑒 (𝑓) = ¬𝑃(𝑀) is defined 

by the symbol 𝑓 as following 𝑓(𝑎) = 𝑎′, so strictly increasing bijection is defined 

from 𝑃(𝑀) to ¬𝑃(𝑀) by 𝑓. It can be shown that 𝑀 is a weakly o-minimal ω-

categorical structure. 

Consider model 𝑀 expansion by new binary relation 𝑅(𝑥, 𝑦). Consider 

𝑀′: = 〈𝑀, <, 𝑃1, 𝑓1, 𝑅2〉, where for any 𝑎 ∈ 𝑃(𝑀′), 𝑏 ∈ ¬𝑃(𝑀′)  

 

 𝑅(𝑎, 𝑏) ⇔ 𝑏 < 𝑎′ + √2 

 

It clear, that 𝑀′ is still weakly o-minimal structure. Examine next formulas:  

 

 𝐹1(𝑥, 𝑦): = 𝑦 ≤ 𝑥 ∧ ∃𝑡(𝑓(𝑡) = 𝑦 ∧ 𝑅(𝑡, 𝑥)) ∧ ¬𝑃(𝑥) 

 

 𝐹𝑛(𝑥, 𝑦): = ∃𝑡(𝐹𝑛−1(𝑡, 𝑦) ∧ 𝐹1(𝑥, 𝑡)), 𝑛 ≥ 2 

 

and for any 𝑏 ∈ 𝑃(𝑀)  

 

 𝐹1(𝑀′𝑏) ⊂ 𝐹2(𝑀′, 𝑏) ⊂. . . ⊂ 𝐹𝑛(𝑀′, 𝑏) ⊂. . ., 
 

so Theory M' isn’t countably categorical theory. 

 

Example 4.5  Consider a linearly ordered structure 𝑀: = 〈𝑀, <, 𝑃1, 𝑅1
2〉 such 

that the universe 𝑀 = 𝑃(𝑀) ∪ ¬𝑃(𝑀), 𝑃(𝑀) < ¬𝑃(𝑀), with 𝑃(𝑀) and ¬𝑃(𝑀) 

matched with ℚ and had the same order as ℚ, where ℚ is a set of rational numbers. 
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To distinguish the elements of these sets, for any element 𝑎 ∈ 𝑃(𝑀) settle it’s 

identical element in ¬𝑃(𝑀) as 𝑎′. Symbol 𝑅1 is designate by next way: for any 

𝑎 ∈ 𝑃(𝑀), 𝑏 ∈ ¬𝑃(𝑀)  

 𝑅1(𝑎, 𝑏) ⇔ 𝑏 < 𝑎′ + √2 
 

It can be shown, that 𝑀 is weakly o-minimal ω-categorical structure. 

Also examine the model 𝑀 expansion 𝑀′ using 𝑅2(𝑥, 𝑦) binary relation: 

suppose 𝑀′: = 〈𝑀, <, 𝑃1, 𝑅1
2, 𝑅2

2〉, in which for all 𝑎 ∈ 𝑃(𝑀′), 𝑏 ∈ ¬𝑃(𝑀′) 

 

 𝑅2(𝑎, 𝑏) ⇔ 𝑏 < 𝑎′ + 2√2 

 

It is clear, that 𝑀′ remains weakly o-minimal structure. Examine next formula: 

 

𝐹1(𝑥, 𝑏): = 𝑏 ≤ 𝑥 ∧ ¬𝑃(𝑥) ∧ ∃𝑡(𝑃(𝑡) ∧ ¬𝑅1(𝑡, 𝑏) ∧ 𝑅2(𝑡, 𝑏) ∧ 𝑅2(𝑡, 𝑥)) 

 

Defining 𝐹𝑛(𝑥, 𝑦) formulas analogically to previous example we obtain that 𝑇ℎ(𝑀′) 

is non countably categorical.  

 

The following example shows that under the expansion of a weakly o-minimal 

ω-categorical structure by (𝑝, 𝑞)-splitting formula for non-algebraic types 𝑝, 𝑞 ∈
𝑆1(∅) we can lose as 1-indiscernibility of this types and weakly o-minimality of such 

expansion. 

 

Example 4.6 [47, P. 1511] Consider a linearly ordered structure 𝑀: = 〈𝑀, <
, 𝑃1, 𝑓1〉, where 𝑀 is a union of interpretations 𝑃 and ¬𝑃 that are disjoint and 

𝑃(𝑀) < ¬𝑃(𝑀), with 𝑃(𝑀) identified with the ℚ × ℚ, ordered lexicographically, 

and ¬𝑃 identified with ℚ and had the same order as ℚ, where ℚ is a set of rational 

numbers. We define using simbol f a partial unary function for which 𝐷𝑜𝑚(𝑓) =
𝑃(𝑀) and 𝑅𝑎𝑛𝑔𝑒(𝑓) = ¬𝑃(𝑀) by next way: 𝑓((𝑛, 𝑚)) = 𝑛, for every 

(𝑛, 𝑚) 𝑓𝑟𝑜𝑚 ℚ × ℚ.  
It is obvious that 𝑇ℎeory 𝑀 is a weakly o-minimal ω-categorical theory, and  

 

 𝐸(𝑧, 𝑡): = 𝑃(𝑧) ∧ 𝑃(𝑡) ∧ ∃𝑦(¬𝑃(𝑦) ∧ 𝑓(𝑧) = 𝑦 ∧ 𝑓(𝑡) = 𝑦) 

 

determine a relation of equivalence, splitting 𝑃(𝑀) into infinitely many convex 

classes.  

Let 𝑝(𝑥): = {𝑃(𝑥)}, 𝑞(𝑥): = {¬𝑃(𝑥)}. Then it’s clear that 𝑝, 𝑞 ∈ 𝑆1(∅) are 

non-algebraic, 𝑅𝐶(𝑝) = 2, 𝑅𝐶(𝑞) = 1, 𝑝 ⊥𝑤 𝑞. 

Consider the following formulas:  

 

 Φ1(𝑥, 𝑦): = ¬𝑃(𝑥) ∧ 𝑃(𝑦) ∧ ∀𝑡(𝐸(𝑡, 𝑦) → 𝑓(𝑡) < 𝑥) 

 

 Φ2(𝑥, 𝑦): = ¬𝑃(𝑥) ∧ 𝑃(𝑦) ∧ ∃𝑡(𝑡 ≥ 𝑦 ∧ 𝑓(𝑡) ≤ 𝑥) 
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It is clear that formulas Φ1(𝑥, 𝑦) and Φ2(𝑥, 𝑦) are (𝑞, 𝑝)-splitting formulas and 

Φ1(𝑏, 𝑀) ⊂ Φ2(𝑏, 𝑀) for any 𝑏 ∈ 𝑞(𝑀). 

Consider an expansion 𝑀′ of a structure 𝑀 by binary predicate 𝑅(𝑥, 𝑦) such 

that for every (𝑎, 𝑐) ∈ 𝑃(𝑀) and 𝑏 ∈ ¬𝑃(𝑀) the formula below is true:  

 

 𝑅(𝑏, (𝑎, 𝑐)) ⇔ 𝑓((𝑎, 𝑐)) ≤ 𝑏 ∧ (𝑓((𝑎, 𝑐)) = 𝑏 ⇒ 𝑐 < 𝑏 + √2) 

 

Then the set 𝑅(𝑏, 𝑀) is convex for every 𝑏 ∈ 𝑞(𝑀),  

 

 𝑅(𝑏, 𝑀) ⊂ 𝑞(𝑀),    𝑅(𝑏, 𝑀)− = 𝑝(𝑀)− 
 

and Φ1(𝑏, 𝑀) ⊂ 𝑅(𝑏, 𝑀) ⊂ Φ2(𝑏, 𝑀). 

Consider the following formula:  

 

 𝜃(𝑥): = 𝑃(𝑥) ∧ ∃(𝑓(𝑥) = 𝑡 ∧ 𝑅(𝑡, 𝑥)) 
 

It is evident, that the set 𝜃(𝑀′) is the union of infinite number of ¬𝜃(𝑀′)-separable 

convex sets, so 𝑝(𝑀′) is not 1-indiscernible and 𝑀′ and non weakly o-minimal.  

 

There was given a complete description of countably categorical theories 

which have finite convexity rank in the work [56, P. 606]. Since in weakly o-minimal 

theory of  1 rank of convexity there is no equivalence relation with infinite number of 

convex classes, then as a corollary we get: 

 

Corollary 4.1  Consider a weakly o-minimal countably categorical theory T of 

convexity rank 1, 𝑀 ⊨ 𝑇, |𝑀| = 𝜔. The following is true: 

(i) Exists an infinite set 𝐶 = {𝑐0, . . . , 𝑐𝑛} ⊆ 𝑀 (𝑀 ∪ {−∞, +∞}, if 𝑀 is not 

having the last or the first elements), made up of every single empty definable 

element from 𝑀 (except −∞, +∞ if there is some of them) that 𝑀 ⊨ 𝑐𝑖 < 𝑐𝑗 for all 

𝑖 < 𝑗 < 𝑛 and for each 𝑗 ∈ {1, . . . , 𝑛} either 𝑀 ⊨ ¬∃𝑥𝑐𝑗−1 < 𝑥 < 𝑐𝑗 or 𝐼𝑗{𝑥 ∈ 𝑀: 𝑀 ⊨

𝑐𝑗−1 < 𝑥 < 𝑐𝑗} is linear order, that is dense, without endpoints and there exists 

𝑘𝑗 ∈ 𝜔 and 𝑝1
𝑗
, . . . , 𝑝𝑘𝑗

𝑗
∈ 𝑆1(∅) such that 𝐼𝑗 = ⋃  

𝑘𝑗

𝑠=1 𝑝𝑠
𝑗
(𝑀); 

(ii) For any nonalgebraic types 𝑝, 𝑞 ∈ 𝑆1(∅) such that 𝑝 ⊥𝑤 𝑞 

If for some 𝛼 ∈ 𝑝(𝑀) 𝑑𝑐𝑙({𝛼}) ∩ 𝑞(𝑀) ≠ ∅, then there is the unique empty 

definable function 𝑓: 𝑝(𝑀) → 𝑞(𝑀), such that it is strictly monotone bijection on 

𝑝(𝑀) 

If 𝑑𝑐𝑙({𝛼}) ∩ 𝑞(𝑀) = ∅ for all 𝛼 ∈ 𝑝(𝑀), then there exists the only (𝑝, 𝑞)-

splitting formula 𝑆(𝑥, 𝑦), such that 𝑓(𝑥): = s𝑢𝑝 𝑆(𝑥, 𝑀) - strictly monotone on 

𝑝(𝑀) 

Thus a theory 𝑇 accepts exception of quantifiers to the language 
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 {=, <} ∪ {𝑐𝑖: 𝑖 ≤ 𝑛} ∪ {𝑈𝑠(𝑥): 𝑠 ≤ 𝑟 = ∑  𝑛
𝑗=1 𝑘𝑗} ∪ 

 

 ∪ {𝑓𝑖,𝑗: 𝑑𝑐𝑙({𝛼}) ∩ 𝑝𝑗(𝑀) ≠ ∅   𝑓𝑜𝑟  𝑠𝑜𝑚𝑒   𝛼 ∈ 𝑝𝑖(𝑀)} ∪ 

 

 ∪ {𝑆𝑖,𝑗(𝑥, 𝑦): 𝑝𝑖 ⊥𝑤 𝑝𝑗 , 𝑑𝑐𝑙({𝛼}) ∩ 𝑝𝑗(𝑀) = ∅ 

 

 𝑓𝑜𝑟  𝑎𝑙𝑙   𝛼 ∈ 𝑝𝑖(𝑀), 𝑆𝑖,𝑗(𝑥, 𝑦)    − − −   (𝑝𝑖 , 𝑝𝑗)  − 𝑠𝑝𝑙𝑖𝑡𝑡𝑖𝑛𝑔  𝑓𝑜𝑟𝑚𝑢𝑙𝑎 } 

Where 𝑈𝑠(𝑥) isolates type 𝑝𝑠 for every 𝑠 ≤ 𝑟 

Moreover for any ordering with selected elements, as represented in (i)-(iii), 

related to weakly o-minimal ω-categorical theory of convexity rank 1, as it was 

presented earlier. 

 

Suppose 𝑀 is weakly o-minimal, countably categorical of convexity rank 1, 𝑝 

and 𝑞 are nonalgebraic 1-types in 𝑀 over emptyset. Suppose 𝑀′ is an expansion of a 

structure 𝑀 by binary predicate 𝑅(𝑥, 𝑦), such that for any 𝛼 ∈ 𝑝(𝑀) the set 𝑅(𝛼, 𝑀) 

is convex, 𝑅(𝛼, 𝑀) ⊂ 𝑞(𝑀) and 𝑅(𝛼, 𝑀)− = 𝑞(𝑀)−. Suppose also that 𝑀′ is weakly 

o-minimal structure and 𝑝, 𝑞 ∈ 𝑆1
𝑀′(∅). 

The following theorem gives necessary and sufficient conditions of theory 

𝑇ℎ(𝑀′) countable categoricity. 

 

Theorem 4.2 Consider a model 𝑀 of a weakly o-minimal ω-categorical theory 

of 1 rank of convexity, non-algebraic one-types 𝑝 and 𝑞 are from 𝑆1
𝑀(∅). Let 𝑀′ be 

an weakly o-minimal expansion of convexity rank 1 of a structure 𝑀 by binary 

predicate 𝑅(𝑥, 𝑦), such that 𝑝, 𝑞 ∈ 𝑆1
𝑀′(∅), for any 𝛼 ∈ 𝑝(𝑀′) the set 𝑅(𝛼, 𝑀′) is 

convex, 𝑅(𝛼, 𝑀′) ⊂ 𝑞(𝑀′) and 𝑅(𝛼, 𝑀′)− = 𝑞(𝑀′)−. Thereat𝑇ℎ𝑒𝑜𝑟𝑦 𝑀′is countably 

categorical ⇔ 𝑝 ⊥𝑀
𝑤 𝑞.  

 

 Proof: (⇒) Suppose 𝑇ℎ𝑒𝑜𝑟𝑦 𝑀′ is ω-categorical. By countable categoricity 

𝑇ℎ(𝑀′) there exists an empty definable formulas 𝑈𝑝(𝑥) and 𝑈𝑞(𝑥), such that 

𝑈𝑝(𝑀′) = 𝑝(𝑀′) and 𝑈𝑞(𝑀′) = 𝑞(𝑀′). 

Note that as 𝑇ℎ(𝑀) is weakly o-minimal, countably categorical theory of 

convexity rank 1, by corollary 7.1 for any 𝑝, 𝑞 ∈ 𝑆1
𝑀(∅) either these types are weakly 

orthogonal or there exists the only ∅-definable bijection and there is no other 

relations between them or there exits the only one (𝑝, 𝑞)-splitting formula and there is 

no other relations. 

Towards a contradiction suppose that types 𝑝, 𝑞 are nonweakly orthogonal in 

structure 𝑀. Hence there exists (𝑝, 𝑞)-splitting formula 𝑅1(𝑥, 𝑦), so for any 𝛼 ∈
𝑝(𝑀′) the set 𝑅1(𝑎, 𝑀′) is convex, 𝑅1(𝑎, 𝑀) ⊂ 𝑞(𝑀′) and 𝑅1(𝑎, 𝑀′)− = 𝑞(𝑀′)−. 

As theory 𝑇ℎ(𝑀) has convexity rank 1, then the function 𝑓1(𝑥): = s𝑢𝑝 𝑅1(𝑥, 

𝑀) is strictly monotone on 𝑝(𝑀). Without loosing the generality suppose that 𝑓1 is 

strictly increasing on 𝑝(𝑀). 

Let 𝑓2(𝑥): = s𝑢𝑝 𝑅(𝑥, 𝑀′). As 𝑇ℎ(𝑀′) has convexity rank 1 also, 𝑝, 𝑞 ∈
𝑆1

𝑀′(∅), then 𝑓2 is also strictly monotone on 𝑝(𝑀′). 
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Case 1. 𝑓2 is strictly increasing on 𝑝(𝑀′). 

Without loosing the generality suppose, that for some 𝛼 ∈ 𝑝(𝑀′) the following 

holds 𝑓1(𝛼) < 𝑓2(𝛼). Then for any 𝛼 ∈ 𝑝(𝑀′) also 𝑓1(𝛼) < 𝑓2(𝛼) holds. 

Consider the following formulas:  

 

𝐹!(𝑥, 𝑦): = 𝑦 ≤ 𝑥 ∧ ¬𝑈𝑞(𝑥) ∧ ∃𝑡(𝑈𝑝(𝑡) ∧ ¬𝑅1(𝑡, 𝑦) ∧ 𝑅(𝑡, 𝑦) ∧ 𝑅(𝑡, 𝑥)) 

 

 𝐹𝑛(𝑥, 𝑦): = ∃𝑡(𝐹𝑛−1(𝑡, 𝑦) ∧ 𝐹1(𝑥, 𝑡)), 𝑛 ≥ 2 

 

Then for any 𝑏 ∈ ¬𝑈𝑞(𝑀′) the following holds:  

 

 𝐹1(𝑀′, 𝑏) ⊂ 𝐹2(𝑀′, 𝑏) ⊂. . . ⊂ 𝐹𝑛(𝑀′, 𝑏) ⊂. .. 
 

so 𝑇ℎ𝑒𝑜𝑟𝑦 𝑀′ is not countably categorical. It contradicts suggestion.  

Case 2. Suppose 𝑓2 strictly decreases on 𝑝(𝑀′). 

Thereat ∃𝛼, 𝛼′𝑓𝑟𝑜𝑚 𝑝(𝑀′) that 𝑓1(𝛼) < 𝑓2(𝛼) and 𝑓1(𝛼′) > 𝑓2(𝛼′). The last 

contradicts that 𝑝 ∈ 𝑆1
𝑀′(∅) 

(⇐) Let 𝑝 ⊥𝑀
𝑤 𝑞. Let’s show 𝑇ℎ𝑒𝑜𝑟𝑦 𝑀′ is an ω-categorical. 

Case 1. For some 𝛼 ∈ 𝑝(𝑀′) the set 𝑅(𝛼, 𝑀′) has right endpoint. 

So consider the formula below: 

 

𝜃(𝑥): = 𝑈𝑞(𝑥) ∧ ∃𝑢(𝑈𝑝(𝑢) ∧ ∀𝑦(𝑅(𝑢, 𝑦) → 𝑦 ≤ 𝑥) ∧ ∀𝑡(¬𝑅(𝑢, 𝑡) → 𝑡 ≥ 𝑥)) 

It is clear that 𝜃(𝑀′) ⊆ 𝑞(𝑀′). By the assumptions 𝜃(𝑀′) ≠ ∅, from where we get 

that 𝜃(𝑀′) = 𝑞(𝑀′). Thus for any 𝛼 ∈ 𝑝(𝑀′) the set 𝑅(𝑎, 𝑀′) has the right endpoint. 

Hence the function 𝑓2(𝑥): = s𝑢𝑝 𝑅(𝑥, 𝑀′) is strictly monotone bijection 

between 𝑝(𝑀′) and 𝑞(𝑀′). 

Case 2. For some 𝛼 ∈ 𝑝(𝑀′) the set 𝑅(𝛼, 𝑀′) does not have right endpoint. 

So consider the formula below:  

 

 𝜓(𝑥): = 𝑈𝑝(𝑥) ∧ ∀𝑦1(𝑅(𝑥, 𝑦1) → ∃𝑡1(𝑦1 < 𝑡1 ∧ 𝑅(𝑥, 𝑡1))) ∧ 

 

 ∀𝑦2(¬𝑅(𝑥, 𝑦2) → ∃𝑡2(𝑡2 < 𝑦2 ∧ ¬𝑅(𝑥, 𝑡2))) 
 

It is clear that 𝜓(𝑀′) ⊆ 𝑝(𝑀′). By the assumptions 𝜓(𝑀′) ≠ ∅, from where we get 

that 𝜓(𝑀′) = 𝑝(𝑀′). Thus for any 𝛼 ∈ 𝑝(𝑀′) the set 𝑅(𝑎, 𝑀′) does not have the right 

endpoint. 

hence the formula 𝑅(𝑥, 𝑦) is the only (𝑝, 𝑞)-splitting formula. 

In both cases 𝑇ℎ(𝑀′) admits quantifier elimination to language  

 

 {=, <} ∪ {𝑐𝑖: 𝑖 ≤ 𝑛} ∪ {𝑈𝑠(𝑥): 𝑠 ≤ 𝑟} ∪ 

 

 ∪ {𝑓𝑖,𝑗: 𝑑𝑐𝑙({𝛼}) ∩ 𝑝𝑗(𝑀′) ≠ ∅   𝑓𝑜𝑟  𝑠𝑜𝑚𝑒   𝛼 ∈ 𝑝𝑖(𝑀′)} ∪ 
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 ∪ {𝑅𝑖,𝑗(𝑥, 𝑦): 𝑝𝑖 ⊥𝑀′
𝑤 𝑝𝑗 , 𝑑𝑐𝑙({𝛼}) ∩ 𝑝𝑗(𝑀′) = ∅   𝑓𝑜𝑟  𝑎𝑙𝑙   𝛼 ∈ 𝑝𝑖(𝑀′)} 

Where {𝑐0, . . . , 𝑐𝑛} is set of all ∅-definable elements of structure 𝑀′. 𝑈𝑠(𝑥) isolates 

nonalgebraic 1-type 𝑝𝑠 for every 𝑠 ≤ 𝑟; 𝑓𝑖,𝑗 is the only ∅-definable bijection between 

𝑝𝑖(𝑀′) and 𝑝𝑗(𝑀′), which is strictly monotone. 𝑅𝑖,𝑗(𝑥, 𝑦) is the only (𝑝𝑖 , 𝑝𝑗)-splitting 

formula. Then by the corollary 7.1 theory 𝑇ℎ(𝑀′) is countably categorical. ∎ 

The following example shows that an expansion of ω-categorical weakly 

ordered minimal structure of convexity rank greater than 1 by (𝑝, 𝑞)-splitting formula 

for nonalgebraic types 𝑝, 𝑞 ∈ 𝑆1(∅) can preserve countable categoricity even in the 

case when this types are non weakly orthogonal. 

 

Example 4.7  Revising example 4.6 introduce the following changes: The 

interpretation of 𝑃 is 𝑄3 ordered lexicographically, and let partial unary function 𝑓 is 

defined by equality 𝑓((𝑛, 𝑚, 𝑘)) = 𝑛 for every (𝑛, 𝑚, 𝑘) ∈ 𝑄3. 

It is evident, that 𝑀 is similarly weakly ordered minimal ω-categorical 

structure.  

By the assumptions for each 𝛽 ∈ 𝑞(𝑀) there is 𝑎 ∈ 𝑄 such that 𝑓((𝑎, 𝑄 ×

𝑄)) = 𝛽 where {𝑎} × 𝑄 × 𝑄 ⊆ 𝑃(𝑀). 

Consider an expansion 𝑀′ of structure 𝑀 by binary predicate 𝑅(𝑥, 𝑦) such that 

for any (𝑎, 𝑐, 𝑑) ∈ 𝑃(𝑀) and 𝛽 ∈ ¬𝑃(𝑀) the following holds:  

𝑅(𝛽, (𝑎, 𝑐, 𝑑)) ⇔ 𝑓(𝑎, 𝑄 × 𝑄)) ≤ 𝛽 ∧ (𝑓((𝑎, 𝑄 × 𝑄)) = 𝛽 ⇒ (𝑎, 𝑐, 𝑑) ∈
(𝑎, 𝑐, 𝑄)) 

 

Then we also have that the set 𝑅(𝛽, 𝑀) is convex for every 𝛽 ∈ 𝑞(𝑀)  

 

 𝑅(𝛽, 𝑀) ⊂ 𝑞(𝑀),    𝑅(𝛽, 𝑀)− = 𝑝(𝑀)− 

 

and Φ1(𝛽, 𝑀) ⊂ 𝑅(𝛽, 𝑀) ⊂ Φ2(𝛽, 𝑀). 

It is possible to see 𝑇ℎ𝑒𝑜𝑟𝑦 𝑀′ is weakly ordered minimal ω-categorical theory 

and 𝑝, 𝑞 ∈ 𝑆1
𝑀′(∅). 

Examine the formula below:  

 

 𝐹(𝑥, 𝑦): = 𝑦 ≤ 𝑥 ∧ 𝑃(𝑦) ∧ 𝑃(𝑥) ∧ ∃𝑡(¬𝑃(𝑡) ∧ 𝑅(𝑡, 𝑥)) 

 

It is possible to see, that 𝐹(𝑥, 𝑦) is convex to the right p-stable formula, 

moreover formula 𝐹(𝑥, 𝑦) is equivalence-generating. Thus by Lemma 2.4 the formula  

 

 𝐸′(𝑥, 𝑦): = 𝐹(𝑥, 𝑦) ∨ 𝐹(𝑦, 𝑥) 
 

is a relation of equivalence which splits 𝑝(𝑀′) into infinitely many infinite classes 

and for all type realisation 𝛼 𝑓𝑟𝑜𝑚 𝑝(𝑀′) the extending is faithful 𝐸′(𝛼, 𝑀′) ⊂
𝐸(𝛼, 𝑀′). Wherefrom we have that convexity rank of type 𝑝 equals to 3 and this 

implies that the theory 𝑇ℎ(𝑀′) has RC=3.  
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5 EXTERNAL DEFINABILITY AND MODEL COMPLETENESS 

 

Let 𝔐 = {〈𝑀, Σ〉}, 𝔑 = {〈𝑁, Σ〉} be two structures of the signature Σ, such that 

𝔐 ≺ 𝔑. We say that a set 𝐴 ⊂ 𝑀 is  externally definable, if 𝐴 = 𝜙(𝑁, 𝛼̅) ∩ 𝑀 for 

some 𝑁-formula, 𝛼̅ ∈ 𝑁\𝑀. In stable theory any externally definable set is internally 

definable. If we take some family of externally definable sets such that it closed over 

all set theory operations: union, intersection, taking complement, cartesian product, 

projection, we obtain family of externally definable sets. Expansion by such family of 

externally definable sets is called to be  pure externally definable expansion. Notice 

that main moment in the expansion by externally definable sets to be pure externally 

definable expansion, is that this family closed over the operation of projection [39, P. 

5435] (preprint 1994). 

The idea to consider the expansion by externally definable set belongs to 

Dugald  Macpherson, David Marker and Charles Steinhorn and expansion of model 

by externally definable set was introduced for the first time in 1994 in preprint of [39, 

P. 5435] 

 

5.1  Model completeness 

 

Definition 5.1.1 Suppose 𝔐: = 〈𝑀; 𝛴〉 is a model of weakly ordered minimal 

theory 𝑇, 𝔑 are its large satiated elementary extension of 𝔐 ≺ 𝔑, 𝐴 ⊆ 𝑀. 

We say that an one-type 𝑝 ∈ 𝑆1(𝐴) is solitary if any 𝐴-2-formula 𝜑(𝑥, 𝑦), such 

that for any 𝛼 ∈ 𝑝(𝑁), if 𝜑(𝛼, 𝑁) ⊂ 𝑝(𝑁) then 𝜑(𝛼, 𝑁) = {𝛼}. In case when 𝔐 is a 

model of o-minimal theory, 𝐴 = 𝑀, 𝑝 defines irrational cut, this one-type is called to 

be uniquely realizable [40, P. 63]. 

We say that an one-type 𝑝 ∈ 𝑆1(𝐴) is quasi-solitary if there is a 2-formula 

𝜃(𝑥, 𝑦) over A that for every 𝛼 ∈ 𝑝(𝑁), 𝜃(𝛼, 𝑁) ⊂ 𝑝(𝑁) and for every 2-formula 

𝜑(𝑥, 𝑦) over M, that for every 𝛼 ∈ 𝑝(𝑁), whenever 𝜑(𝛼, 𝑁) ⊂ 𝑝(𝑁) the 𝜑(𝛼, 𝑁) ⊆
𝜃(𝛼, 𝑁). In the event when 𝜃(𝑥, 𝑦) ≡ 𝑥 = 𝑦 we have solitary one-type.  

 

Notice that it follows from the definition that 𝜃(𝑁, 𝛼) is convex. 

The following theorem was proved for an o-minimal case in [39, P. 5435]. 

 

Theorem 5.1.1 [39, P. 5435] Let 𝔐 be a model of a weakly ordered minimal 

theory such that any type over 𝑀 is solitary. Then any expansion of 𝔐 by a unary 

convex predicate is pure externally definable expansion and has weakly o-minimal 

theory.  

 

 Proof: Consider 𝔐: = 〈𝑀; Σ〉 - a model of a weakly ordered minimal theory of 

signature Σ, Σ+: = Σ ∪ {𝑃1} be the expanded signature of 𝔐+: = 〈𝑀; Σ+〉, and 𝑇+ be 

the theory of 𝔐+.  

Convex expansion always go through in general two cuts. Expansion of model 

by convex predicate can be considered step by step as expansion through each cut. 

We don’t lose generality if we consider such expansion, that next sentence holds:  
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 𝔐+ ⊨ ∀𝑥∀𝑦(𝑃(𝑥) ∧ (𝑦 < 𝑥 → 𝑃(𝑦))). 
 

Let 𝔑 be an elementary extension of 𝔐 ≺ 𝔑 such that there exists a realization 𝛼 of 

one-type over M which defines cut of expansion. So, we suppose that 𝑃(𝔐+) =
(−∞, 𝛼)𝔑 ∩ 𝑀. 

Claim: For any 𝜓+(𝑡1, 𝑡2, . . . , 𝑡𝑛) of signature Σ+ ∃ 𝐾𝜓+(𝑡1, 𝑡2, . . . , 𝑡𝑛, 𝛼) 

formula of the signature Σ so that for every 𝑎1, 𝑎2, . . . , 𝑎𝑛 ∈ 𝑀 the proceeding is true:  

 

 [𝔐+ ⊨ 𝜓+(𝑎1, 𝑎2, . . . , 𝑎𝑛) ↔ 𝔑 ⊨ 𝐾𝜓+(𝑎1, 𝑎2, . . . , 𝑎𝑛, 𝛼)] 

 

Proof of Claim: It will be examined the claim by induction method on depth of 

formulas constructions. 

Consider the depth 0 formula. For it  

 

 𝜓0
+(𝑡1, 𝑡2, . . . , 𝑡𝑛) =  ∨

 
[∧

 
𝜓𝑖(𝑡1, 𝑡2, . . . , 𝑡𝑛) ∧

 
𝑃(𝑡𝑗) ∧

 
¬𝑃(𝑡𝑘)], 

 

where 𝜓𝑖 are the signature Σ formulas. For the 𝜓0
+ formula we can define  

 

𝐾𝜓0
+(𝑡1, 𝑡2, . . . , 𝑡𝑛, 𝛼): =∨ [∧ 𝜓𝑖(𝑡1, 𝑡2, . . . , 𝑡𝑛) ∧ (𝑡𝑗 < 𝛼) ∧ (𝑡𝑘 > 𝛼)].  (1) 

 

Then for any 𝑎1, 𝑎2, . . . , 𝑎𝑛 ∈ 𝑀 the following holds:  

 

 [𝔐+ ⊨ 𝜓0
+(𝑎1, 𝑎2, . . . , 𝑎𝑛) ↔ 𝔑 ⊨ 𝐾𝜓0

+(𝑎1, 𝑎2, . . . , 𝑎𝑛, 𝛼)]. 

 

Suppose that relation holds for the formulas of depth n. Consider the following 

formula  

 

𝐾∃𝑦𝜓+(𝑦,𝑡̅)(𝑡̅, 𝛼): = ∃𝑧1∃𝑧2((𝑧1 < 𝛼 < 𝑧2) ∧ ∃𝑦∀𝑧((𝑧1 < 𝑧 < 𝑧2)

→ 𝐾𝜓+(𝑦, 𝑡̅, 𝑧))).  (2) 

 

Further proof is identical to a given in historical review for o-minimal theories by 

Macpherson-Marker-Steinhorn. 

 

Theorem 5.1.2 [88] (Model completeness of expansion by unary predicate, 

solitary) 

Let 𝔐: = 〈𝑀; Σ〉 be a model of weakly o-minimal model complete theory. 

Expansion of model 𝔑 by unary predicate 𝔐+: = 〈𝑀; Σ+〉, where Σ+: = Σ ∪ {𝑃1}, 𝑇+ 

is theory of 𝔐+. 

Let 𝔏+ ⊨ 𝑇+, such that 𝔐+ ⊂ 𝔏+, since 𝑇 is model complete, 𝔐 ≺ 𝔏. 

If 𝑃1(𝑥) goes through solitary type then 𝔐+ ≺ 𝔏+. Thus 𝑇+ is model 

complete. 
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 Proof: Let 𝑈(𝑥, 𝑦, 𝑧̅) be convex to the right formula for any 𝑧̅ such that  

 

 ∀𝑧̅∀𝑥∀𝑦(𝑈(𝑥, 𝑦, 𝑧̅) → (𝑥 < 𝑦 ∧ ∀𝑢(𝑥 < 𝑢 < 𝑦 → 𝑈(𝑥, 𝑢, 𝑧̅)))).  (∗) 
 

Claim:  Theory  

𝑇+ ⊨ for any 𝑧̅ and some 𝑥 (𝑃(𝑥) ∧ any 𝑥′(𝑥 < 𝑥′

→ it exists 𝑦 (𝑈(𝑥′, 𝑦, 𝑧̅) ∧ ¬𝑃(𝑦))). 
Proof of Claim: We will prove using method by contradiction. Suppose that the 

statement for 𝑇+ is not true, then  

 𝑇+ ⊨ for some 𝑧̅ and any 𝑥(𝑃(𝑥) → for some 𝑥′(𝑥 <
𝑥′ ∧ forany 𝑦(𝑈(𝑥′, 𝑦, 𝑧̅) → 𝑃(𝑦))). 
As far as 𝑇+ = 𝑇ℎ(𝔐) for some 𝑏̅ ∈ 𝑀 we have  

 

 𝔐+ ⊨ ∀𝑥(𝑃(𝑥) → ∃𝑥′(𝑥 < 𝑥′ ∧ ∀𝑦(𝑈(𝑥′, 𝑦, 𝑏̅) → 𝑃(𝑦)))  (∗∗). 
 

Let 𝐶: = 𝑃(𝔐+) ∩ 𝑀, 𝐷: = ¬𝑃(𝔐+) ∩ 𝑀. Then 𝐶 < 𝐷 and 𝑀 = 𝐶 ∪ 𝐷. Consider 

set of 𝑀-1-formulas Γ(𝑥): = {(𝑐 < 𝑥 < 𝑑 ∧ ∀𝑦(𝑈(𝑥, 𝑦, 𝑏̅) → 𝑦 < 𝑑))|𝑐 ∈ 𝐶, 𝑑 ∈ 𝐷}. 

By (∗∗), Γ(𝑥) is consistent and has unique extension to complete solitary one-type 

over 𝑀, which determines cut and the expansion. So any realization of Γ satisfies 

solitary one-type one side and {𝛼} = 𝑈(𝛼, 𝑁, 𝑏̅) ⊂ 𝑝(𝑁) on other side by (∗). 

Contradiction. 

∎ 

Claim says that for any model 𝔏+ of 𝑇+, the cut determined on 𝔏 is solitary. 

Since 𝔐+ ⊂ 𝔏+, 𝑃(𝔐+) ⊂ 𝑃(𝔏+). The last means that 𝐶𝑀 ⊂ 𝐶𝐿 < 𝐷𝐿, 𝐷𝑀 ⊂ 𝐷𝐿. 

Thus we can take the realization 𝛼 of the cut for 𝔏+ as in proof of Theorem 8.1 and 

convenable for the proof for 𝔐+. For any 𝜑+(𝑥̅) of theory 𝑇+ and 𝑎̅ ∈ 𝑀 that 

𝔐+ ⊨ 𝜑+(𝑎̅) there is 𝐾𝜑+(𝑥̅, 𝑦) of theory 𝑇 and 𝛼 ∈ 𝑁\𝑀 such that  

 

 𝔐+ ⊨ 𝜑+(𝑎̅) ↔ 𝔑 ⊨ 𝐾𝜑+(𝑎̅, 𝛼). 

 

The same holds for 𝔏+:  

 

 𝔏+ ⊨ 𝜑+(𝑏̅) ↔ 𝔑 ⊨ 𝐾𝜑+(𝑏̅, 𝛼). 

 

𝐾𝜑+(𝑥̅, 𝛼) is the same formula for both 𝔐 and 𝔏. Whenever we consider 𝑎̅ ∈ 𝑀  

 

 𝔐+ ⊨ 𝜑+(𝑎̅) ⇔ 𝔑 ⊨ 𝐾𝜑+(𝑎̅, 𝛼) ⇔ 𝔏+ ⊨ 𝜑+(𝑎̅), 

 

thus 𝑇+ is model complete. 

 ∎ 

Theorem 5.1.3 [89] (Model completeness of expansion by unary predicate, 

quasisolitary) Let 𝔐: = 〈𝑀; 𝛴〉 be a model of a weakly o-minimal, model complete 
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theory, 𝔐+: =< 𝑀; 𝛴+ > be an expansion of model 𝔐 by unary predicate 𝑃1, such 

that 𝑃1(𝑥) goes through quasi-solitary type, where 𝛴+: = 𝛴 ∪ {𝑃1}. Then 

(i) 𝑇+ = 𝑇ℎ(𝔐+) is weakly o-minimal and this expansion of 𝔐 is pure 

externally definable expansion. 

(ii) 𝑇+ is model complete, if greatest 𝑝-preserving 2-formula ∅-definable 

(iii) 𝑇+ ∪ 𝑟+(𝑐̅) = 𝑇(𝑐̅)+ model complete theory, where 𝑐̅ ∈ 𝑀 is tuple from 

the greatest 𝑝-preserving 2-formula.  

 

 Proof: (𝑖) This repeats proof of the same theorem for case solitary. The proof 

consists in showing by induction on the construction of a formula in the expanded 

language 𝜑+(𝑥1, 𝑥2, . . . , 𝑥𝑛) that the hold on the parameters is equivalent to the hold 

of the corresponding formula 

𝐾𝜑+(𝑥1, 𝑥2, . . . , 𝑥𝑛, 𝛼, 𝑐̅) in the initial language on these parameters and an 

additional parameter from the saturated elementary extension. For any 

𝜑+(𝑥1, 𝑥2, . . . , 𝑥𝑛) of signature Σ+ it exists 𝐾𝜑+(𝑥1, 𝑥2, . . . , 𝑥𝑛, 𝛼, 𝑐̅)  formula with 

𝑐̅ f𝑟𝑜𝑚 𝑀, 𝛼 𝑓𝑟𝑜𝑚 𝑁\𝑀 of the signature Σ so that for all 𝑎1, 𝑎2, . . . , 𝑎𝑛 𝑓𝑟𝑜𝑚 𝑀 the 

next holds: 

 

 [𝔐+ ⊨ 𝜑+(𝑎1, 𝑎2, . . . , 𝑎𝑛) ↔ 𝔑 ⊨ 𝐾𝜑+(𝑎1, 𝑎2, . . . , 𝑎𝑛, 𝛼, 𝑐̅)]. 

 

There are small change in the formulas (1) and (2). Let 𝐸(𝑥, 𝑦, 𝑐̅) be the greatest 𝑝-

preserving formula. If in solitary case 𝑃(𝔐+) = (−∞, 𝛼)𝑁 ∩ 𝑀 i.e. by formula 

𝑥 < 𝛼, then in case quasi-solitary by formula 𝑥 < 𝐸(𝛼, 𝑁, 𝑐̅).  

 

 𝐾𝜑0
+(𝑥1, 𝑥2, … , 𝑥𝑛, 𝛼, 𝑐̅): =∨ [∧ 𝜑𝑖(𝑥1, 𝑥2, … , 𝑥𝑛) ∧ (𝑥𝑗 < 𝐸(𝛼, 𝑁, 𝑐̅) ∧ (𝑥𝑘 >

𝐸(𝛼, 𝑁, 𝑐̅)].                                                                                                                   (1′)   

 

𝐾∃𝑦𝜑+(𝑦,𝑥̅)(𝑥̅, 𝛼, 𝑐̅): = ∃𝑧1∃𝑧2((𝑧1 < 𝐸(𝛼, 𝑁, 𝑐̅) < 𝑧2) ∧ ∃𝑦∀𝑧((𝑧1 < 𝑧 < 𝑧2)

→ 𝐾𝜑+(𝑦, 𝑥̅, 𝑧))).                                                                      (2′) 

 

(𝑖𝑖), (𝑖𝑖𝑖) Let 𝑈(𝑥, 𝑦, 𝑧̅) be convex to right formula of signature Σ satisfied (∗), 

then the property "𝑈(𝑥, 𝑦, 𝑎̅) is 𝑝-preserving" is expressed by Σ+-formula: 

  

 𝐻+(𝑈, 𝑎̅): = ∃𝑥1(𝑃1(𝑥1) ∧ ∀𝑥2((𝑥1 < 𝑥2 ∧ 𝑃1(𝑥2)) → (𝑈(𝑥2, 𝑀, 𝑎̅) ⊂
𝑃1(𝑀)))). 

 

Θ+(𝐸, 𝑐̅, 𝑈) be Σ+(𝑐̅)-formula that says that 𝐸 is more than any 𝑈 𝑝-preserving: 

 𝐻+(𝐸, 𝑐̅) ∧ ∀𝑧̅(𝐻+(𝑈, 𝑧̅) → ∃𝑥1(𝑃1(𝑥1) ∧ ∀𝑥2((𝑥1 < 𝑥2 ∧ 𝑃1(𝑥2)) →
(𝑈(𝑥2, 𝑀) ⊆ 𝐸(𝑥2, 𝑀, 𝑐̅))))). 

 

 Let 𝐵 the set of all convex to right Σ-formulas 𝑈(𝑥, 𝑦, 𝑧̅) with condition (∗). Then 

define two sets of Σ+-sentences. Γ0: = {∃𝑣̅Θ+(𝐸, 𝑣̅, 𝑈)|𝑈 ∈ 𝐵} and Γ: =
{Θ+(𝐸, 𝑐̅, 𝑈)|𝑈 ∈ 𝐵}. Since for any 𝑈(𝑥, 𝑦, 𝑧̅) convex to right Σ-formula holds: 
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𝔐+ ⊨ Θ+(𝐸, 𝑐̅, 𝑈). Γ0 ⊂ 𝑇ℎ(𝔐+) = 𝑇+ and Γ ⊂ 𝑇ℎ𝑒𝑜𝑟𝑦(𝔐+(𝑐̅)) = 𝑇+ ∪ 𝑟+(𝑐̅), 

whereat 𝔐+(𝑐̅) = 〈𝑀, Σ+, 𝑐̅〉, whereat the parameters 𝑐̅ is the ones of the most great 

𝑝-preserving 2-formula. So far as 𝔐+ ⊨ 𝐻+(𝐸, 𝑐̅, 𝐸), if we consider arbitrary model 

𝔏+ of 𝑇+ as an expansion of 𝔏 then we obtain that this expansion goes through quasi-

solitary 1-type with greatest 𝑝-preserving 𝐸(𝑥, 𝑦, 𝑏̅), 𝑏̅ ∈ 𝐿. Then for any 

𝜑+(𝑥1, 𝑥2, . . . , 𝑥𝑛) of the Σ+signature  ∃ 𝐾𝜑+(𝑥1, 𝑥2, . . . , 𝑥𝑛, 𝛼, 𝑏̅) formula with 

𝑐̅ 𝑓𝑟𝑜𝑚 𝑀, 𝛼 𝑓𝑟𝑜𝑚 𝑁\𝑀 of the Σ signature so that for all 𝑎1, 𝑎2, . . . , 𝑎𝑛 ∈ 𝐿 the 

proceeding is true:  

 

 [𝔏+ ⊨ 𝜑+(𝑎1, 𝑎2, . . . , 𝑎𝑛) ↔ 𝔑 ⊨ 𝐾𝜑+(𝑎1, 𝑎2, . . . , 𝑎𝑛, 𝛼, 𝑏̅)]. 

 

(𝑖𝑖) Consider 𝔏+: = 〈𝐿; Σ+〉 ⊨ 𝑇+ such that 𝔐+ ⊂ 𝔏+. Since 𝑇 is model complete 

𝔐 ≺ 𝔏 ≺ 𝔑. If 𝐸(𝑥, 𝑦) is ∅-definable Σ-formula, then for any 𝜑+(𝑥1, 𝑥2, . . . , 𝑥𝑛) of 

signature Σ+, for any 𝑎1, 𝑎2, . . . , 𝑎𝑛 ∈ 𝑀, because the greatest 𝑝-preserving in both 

models coincide  

 

 𝔐+ ⊨ 𝜑+(𝑎1, 𝑎2, . . . , 𝑎𝑛) ↔ 𝔑 ⊨ 𝐾𝜑+(𝑎1, 𝑎2, . . . , 𝑎𝑛, 𝛼) ↔ 𝔏+ ⊨

𝜑+(𝑎1, 𝑎2, . . . , 𝑎𝑛). 
 

Thus 𝑇+ is model complete. 

(𝑖𝑖𝑖) Consider 𝔏+(𝑐̅): = 〈𝐿; Σ+, 𝑐̅〉 ⊨ 𝑇+(𝑐̅) such that 𝔐+(𝑐̅) ⊂ 𝔏+(𝑐̅). Since 𝑇 

is model complete 𝔐 ≺ 𝔏 ≺ 𝔑, 𝔐(𝑐̅) ≺ 𝔏(𝑐̅). If 𝐸(𝑥, 𝑦, 𝑐̅) is 𝑐̅-definable Σ-formula, 

then for any 𝜑+(𝑥1, 𝑥2, . . . , 𝑥𝑛) of signature Σ+, for any 𝑎1, 𝑎2, . . . , 𝑎𝑛 ∈ 𝑀, because 

the greatest 𝑝-preserving in both models coincide  

 

 𝔐+ ⊨ 𝜑+(𝑎1, 𝑎2, . . . , 𝑎𝑛) ↔ 𝔑 ⊨ 𝐾𝜑+(𝑎1, 𝑎2, . . . , 𝑎𝑛, 𝛼, 𝑐̅) ↔ 𝔏+ ⊨

𝜑+(𝑎1, 𝑎2, . . . , 𝑎𝑛). 
 

Thus 𝑇+(𝑐̅) is model complete.              ∎ 

 

5.2 External definability 

 

Externally definable sets is an special case of expansion, which is equivalent to 

extension, i.e. any formula in new language is defined in initial language using new 

external parameters. 

 External definability. Let 𝔐 be elementary substructure of 𝔑. The pair of 

models 𝔐, 𝔑, such that 𝔑 is saturated over 𝑀, is called  beautiful pair. Let 𝑝: =
𝑡𝑝(𝛼|𝑀), where 𝛼̅ ∈ 𝑁\𝑀. Then we define the predicate 𝑅(𝜓,𝑝)(𝑦̅) on the set 𝑀, 

where 𝜓(𝑥̅, 𝑦̅) is arbitrary formula, ⊨ 𝑅(𝜓,𝑝)(𝑎̅) ⇔ if the next holds:  

 

 𝜓(𝑥̅, 𝑎̅) ∈ 𝑡𝑝(𝛼̅ ∈ 𝑀)   𝑖𝑓  𝑎𝑛𝑑  𝑜𝑛𝑙𝑦  𝑖𝑓   𝔑 ⊨ 𝜓(𝛼̅, 𝑎̅) 

 

Let Σ+: = {𝑅(𝜓,𝑝)(𝑦̅)|𝑝 ∈ 𝑆(𝑀), 𝜓 ∈ Σ} denote by 𝔐+ = 〈𝑀; Σ+〉. If a pair of 
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models (𝑀, 𝑁) is conservative pair (that is type of any tuple elements from 𝑁 over 𝑀 

is definable), then from the definition the structure 𝔐+ is the structure obtained from 

𝔐 scolemization of 𝔐. We will consider two approaches of the simple cases when 

𝔐+ constructed from one 1-type for o-minimal theory. 

Consider the Σ signature complete theory 𝑇. Denote a model of the theory as 

𝔐. The 𝔐 expansion using type𝑝 ∈ 𝑆1(𝑀) is 𝔐𝑝
+, if 𝔐𝑝

+: = 〈𝑀; Σ𝑝
+〉, where Σ𝑝

+: =

{𝑅(𝜓.𝑝)(𝑦̅)|𝜓 ∈ Σ}. 

If for every single formula 𝜙(𝑦̅) of the signature Σ𝑝
+ there exists a formula 

𝐾𝜙(𝑦̅, 𝑧̅) of the signature Σ and ∃ 𝛼̅ 𝑓𝑟𝑜𝑚 𝑁\𝑀 such that ∀ 𝑎̅ 𝑓𝑟𝑜𝑚 𝑀 the 

proceeding is true:  

 𝔐𝑝
+ ⊨ 𝜙(𝑎̅) ⇐⊨ 𝐾𝜙(𝑎̅, 𝛼̅). 

 

We say it this occasion that 𝔐𝑝
+  admits uniformly representation of Σ𝑝

+-formulas by 

Σ-formulas, 

 In 2000 [39, P. 5435] it was verified that unary convex predicate expansion of 

o-minimal structure preserves weak o-minimality, in the case when this predicate is 

traversed by a 1-type, that has a unique realisation, by Macpherson-Marker-

Steinhorn. Uniquely realizable 1-type 𝑝 ∈ 𝑆1(𝑀) over M, as introduced by D. Marker 

[40, P. 63], is the only the 1-type 𝑝 realization from the set of the type realization 

over a prime model M and this realisation of type. The following characteristic is true 

for uniquely realizable 1-type p: for the number of 𝑝 realizations there is not any 

definable functions that can act on it. At the same time Macpherson-Marker-

Steinhorn approach was descirbed in historical review, and was applied for uniquelly 

realisable, solitary, quasi-solitary, model complete theories. 

 B.S. Baizhanov approach. For the event when 𝑝 ∈ 𝑆1(𝑀) is a non uniquely 

realizable type, on the base of theory of (non)orthogonality of 1-types and its 

systematization made in [25, P. 565; 40, P. 63; 41, P. 146; 42, P. 185] (Marker, 

Mayer, Pillay-Steinhorn, Marker-Steinhorn, 1986–1994), B.S. Baizhanov proposed 

[44; P. 3] (1995) to take the constants from an infinite indiscernible sequence 

𝐼 = 〈𝛼𝑛〉𝑛<𝜔 over 𝑀 for 𝐾∃𝑥𝜓(𝑥,𝑦̅), where 𝛼𝑛 from 𝑝(𝔑). Taking attention that there 

is a finite quantity of irrational cuts (that is 1-types over 𝑀) ifthe set 

𝐾𝜓(𝑥,𝑦̅)(𝔑, 𝑎̅, 𝛼̅𝑛) ∩ 𝑀 = ∅, that for every such 1-type 𝑟 ∈ 𝑆1(𝑀), 𝐾𝜓(𝑥,𝑦̅)(𝔑, 𝑎̅, 𝛼̅𝑛) 

is a subset of 

 

 𝑄𝑉𝑟(𝛼̅𝑛): = {𝛽 ∈ 𝑟(𝔑)  | there exists an 𝑀𝛼̅𝑛-1-formula Θ(𝑥, 𝛼̅𝑛), such that 

𝛽 ∈ Θ(𝔑, 𝛼̅𝑛) ⊂ 𝑟(𝔑)}.  

 

There is two parts of the idea to use an indiscernible sequence. 

(i) If ∃ 𝑐 𝑓𝑟𝑜𝑚 𝑀, 𝔑 ⊨ 𝐾𝜓(𝑥,𝑦̅)(𝑐, 𝑎̅, 𝛼̅𝑛), consequently for every tuple 

𝛾̅ equals to 〈𝛼𝑖0
, …, 𝛼𝑖𝑛

〉  (𝑛 < 𝑖0 < ⋯ < 𝑖𝑛), 𝔑 ⊨ 𝐾𝜓(𝑥,𝑦̅)(𝑐, 𝑎̅, 𝛾̅), when 𝛼̅𝑛 and  𝛾̅ 

have identic type over 𝑀. 

(ii) But to find a sequence 𝐼 such that for each 𝑟 ∈ 𝑆1(𝑀),  
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for every 𝛾̅ = 〈𝛼𝑖0
, … , 𝛼𝑖𝑛

〉 (𝑛 < 𝑖0 < ⋯ < 𝑖𝑛), 𝑄𝑉𝑟(𝛼̅𝑛) ∩ 𝑄𝑉𝑟(𝛾̅) = ∅. 

 

To find the sequence 𝐼 that is indiscernible define the properties (𝑃1)-(𝑃5) that 

follow from the theory of non orthogonality of 1-types over sets in o-minimal 

theories and the systematization of 1-types. 

(𝑃1) [40, P. 63] (Marker 1986). Consider two one types 𝑟, 𝑞 ∈ 𝑆1(𝐴), and let 

type 𝑟(𝑦) ∪ 𝑞(𝑥) be non complete 2-type (In 1978 Shelah verified that such 𝑞 and 𝑟 

are non weakly orthogonal). In this case there exists an monotonic bijection 

𝑔: 𝑞(𝔑) → 𝑟(𝔑) definable over 𝐴 and therefore, 𝑞 is irrational whenever 𝑟 is 

irrational; 

Moreover 𝑞 is uniquely realizable whenever 𝑟 is. 

Recall that whenever type 𝑞 ∈ 𝑆1(𝐴) is irrational 𝑞(𝔑) is convex non-

definable set without maximal and minimal elements. 

(𝑃2) Whenever 𝑞 ∈ 𝑆1(𝐴) is irrational for any 𝛾̅, 𝑄𝑉𝑞(𝛾̅) = 𝑉𝑞(𝛾), where  

 𝑉𝑞(𝛾̅): = {𝛽 ∈ 𝑞(𝔑)  |  ∃𝛿1, 𝛿2 ∈ 𝑞(𝔑),  there exists an 𝐴𝛾̅-1-formula 𝑆(𝑥, 𝛾̅), 

𝛿1 < 𝑆(𝔑, 𝛾̅) < 𝛿2, 𝛽 ∈ 𝑆(𝔑, 𝛾̅)}.  

 The  quasi-neighborhood of 𝛾̅ in 𝑞 (𝑄𝑉𝑞(𝛾̅)) is the union of sets definable over 

𝐴𝛾̅, and every this definable set is a subset of 𝑞(𝔑), a convex non-definable set 

without minimal and maximal elements. Therefore such definable set is a subset of 

𝑉𝑞(𝛾̅) ( neighborhood of 𝛾̅ in 𝑞). This explains the equality of two convex sets. 

(𝑃3) If 𝑞 ∈ 𝑆1(𝐴) is non uniquely realizable and irrational, then for any 𝛾̅ ∈ 𝑁, 

whenever 𝑄𝑉𝑞(𝛾̅) = ∅ the 1-types 𝑞(𝑥) ∪ {𝑥 < 𝑄𝑉𝑞(𝛾̅)} and 𝑞(𝑥) ∪ {𝑄𝑉𝑞(𝛾̅) < 𝑥} 

are non uniquely realizable and irrational. 

By theorem of compactness and (𝑃2) there exists 𝛿1, 𝛿2 ∈ 𝑞(𝔑) such that 

𝛿1 < 𝑉𝑞(𝛾̅) < 𝛿2 and since 𝑞 is non uniquely realizable that is there exists definable 

over 𝐴 monotonic bijection 𝑓: 𝑞(𝔑) → 𝑞(𝔑), neighbourhood 𝑉𝑞(𝔑) can not have 

minimal and maximal element. Concerning that for irrational type 𝑞, 𝑞(𝔑) is a 

convex non-definable set without maximal and minimal elements, 𝑟1: = 𝑡𝑝(𝛿1|𝐴𝛾̅) 

and 𝑟2 = 𝑡𝑝(𝛿2|𝐴𝛾̅) are irrational and because 𝑓(𝑉𝑞(𝛾̅)) = 𝑉𝑞(𝛾̅), where 𝑓 acts on 

𝑟1(𝔑) and 𝑟2(𝔑). This means 𝑟1 and 𝑟2 are non uniquely realizable. 

Denote 𝑝𝑛(𝑥): = 𝑝(𝑥) ∪ (𝑄𝑉𝑝(𝛼̅𝑛−1) < 𝑥). Then by (𝑃2), (𝑃3) 𝑝𝑛 is non 

uniquely realizable, irrational and finitely satisfiable in 𝑀 because the right sides of 𝑝 

and 𝑝𝑛 coincide 

For any 𝑛, 𝑘, 𝑚 < 𝜔,  

 

 𝑄𝑉𝑝𝑛
(𝛼𝑛, 𝛼𝑛+1, … , 𝛼𝑛+𝑘) < 𝑄𝑉𝑝𝑛

(𝛼𝑛+𝑘+1, 𝛼𝑛+𝑘+2, … , 𝛼𝑛+𝑘+𝑚), (1) 

 

 and therefore, all these sets have empty intersection. 

Proof of (1) is done by induction on 𝑚. Assume (1) for m.  

Let 𝑟1(𝑥) = 𝑝𝑛 ∪ (𝑥 < 𝑄𝑉𝑝𝑛
(𝑥)(𝛼𝑛+𝑘+1, … , 𝛼𝑛+𝑘+𝑚)) and  

 

 𝑟2(𝑦) = 𝑝𝑛(𝑦) ∪ (𝑄𝑉𝑝𝑛
(𝛼𝑛+𝑘+1, … , 𝛼𝑛+𝑘+𝑚) < 𝑦). 



69 
 

 

Suppose that  

 

 𝑄𝑉𝑝𝑛
(𝛼𝑛, 𝛼𝑛+1, … , 𝛼𝑛+𝑘) ∩ 𝑄𝑉𝑝𝑛

(𝛼𝑛+𝑘+1, … , 𝛼𝑛+𝑘+𝑚, 𝛼𝑛+𝑘+𝑚+1) = ∅. 

 

As long as the first set does not change, there exists a formula 𝐿(𝑥, 𝛼𝑛+𝑘+𝑚+1) 

definable over 𝑀𝛼̅𝑛𝛼𝑛+𝑘+1 … 𝛼𝑛+𝑘+𝑚+1 such that  

 

 𝐿(𝔑, 𝛼𝑛+𝑘+𝑚+1) ⊂ 𝑄𝑉𝑝𝑛
(𝛼𝑛, 𝛼𝑛+1, … , 𝛼𝑛+𝑘) ⊂ 𝑟(𝔑). 

 

Let 𝛽 be the endpoint of one of the intervals of formula 𝐿, then since 𝑝𝑛 is non 

uniquely realizable,  

 

 𝛽 ∈ 𝑄𝑉𝑝𝑛
(𝛼𝑛, 𝛼𝑛+1, … , 𝛼𝑛+𝑘) ⊂ 𝑟(𝔑). 

 

As long as 𝛽 ⊨ 𝑟1 and 𝛼𝑛+𝑘+𝑚+1 ⊨ 𝑟2 by (𝑃1) there exists monotonic function 

𝑓: 𝑟2(𝔑) → 𝑟1(𝔑) definable over 𝑀𝛼̅𝑛𝛼𝑛+𝑘+1 … , 𝛼𝑛+𝑘+𝑚 such that 𝑓(𝛼𝑛+𝑘+𝑚+1) =
𝛽. However 𝛽 ∈ 𝑄𝑉𝑝𝑛

(𝛼𝑛, 𝛼𝑛+1, … , 𝛼𝑛+𝑘) and therefore, there is 1-formula 𝐻(𝑥) 

over 𝑀𝛼̅𝑛+𝑘 such that  

 

 𝛽 ∈ 𝐻(𝔑) ⊂ 𝑄𝑉𝑝𝑛
(𝛼𝑛, 𝛼𝑛+1, … , 𝛼𝑛+𝑘) ⊂ 𝑟1(𝔑). 

 

Then 𝛼𝑛+𝑘+𝑚+1 belongs to set definable over 𝑀𝛼̅𝑛+𝑘+𝑚 𝑓−1(𝐻(𝔑)) ⊂ 𝑟2(𝔑). This 

means 𝛼𝑛+𝑘+𝑚+1 ∈ 𝑄𝑉𝑝(𝛼̅𝑛+𝑘+𝑚). Contradiction. 

From (𝑃1) and (1) it follows that for every 𝑟 ∈ 𝑆1(𝑀), whenever for any 𝑖 < 𝑛, 

𝑝𝑖 ⊥𝑤 𝑟 and 𝑝𝑛 ⊥𝑤 𝑟 

 

 𝑄𝑉𝑟(𝛼̅) ∩ 𝑄𝑉𝑟(𝛼̅𝑖 , 𝛼𝑛+𝑖+1, … , 𝛼2𝑛+1) = ∅ (2) 

 

Let for Σ+-formula 𝜓(𝑥, 𝑦̅) corresponding formula of signature Σ is 𝐾𝜓(𝑥,𝑦̅)(𝑥, 

𝑦̅, 𝛼̅𝑛). Therefore to have the solution in 𝑀 for any formula 𝐾𝜓(𝑥, 𝑎̅, 𝛼̅𝑛) it is 

sufficient to write the formula  

 

 𝐾∃𝑥𝜓(𝑥,𝑦̅)(𝑦̅, 𝛼̅2𝑛+1): = ∃𝑥(𝐾𝜓(𝑥, 𝑦̅, 𝛼̅𝑛) ∧ 

 ∧𝑖≤𝑛 𝐾𝜓(𝑥, 𝑦̅, 𝛼̅𝑛−𝑖 , 𝛼(𝑛−𝑖)+𝑛+1, 𝛼(𝑛−𝑖)+𝑛+2 … , 𝛼2𝑛+1)). 

 

In 1996 B.S. Baizhanov dealed with problem on model of weakly ordered 

minimal theory concerning the unary convex predicate expantion of a model. He 

submitted in the Journal of Symbolic Logic his results of obtaining a systematization 

of 1-types over a subset of a model of weakly ordered minimal theory. His arlicle was 

published in 2001 [8, P. 1382]. Ye.Baisalov and B. Poizat studied "beautiful" pairs of 

ordered minimal theories models. In 1996 they verified the ∃𝑥 ∈ 𝑀 quantifier 

elimination [90]. Hard to say that are the approaches in [90, P. 570] and [44, P. 3] are 
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different, because they have similar principles (i)-(ii) from [44, P. 3]. 

We say that the expansion 𝔐+ by all externally definable subsets admits 

quantifier elimination, whenever for every formula 𝜙(𝑦̅) of signature Σ+ there exists 

a formula of signature 𝐾𝜙(𝑦̅, 𝑧̅)  Σ, and the element 𝛼̅ ∈ 𝑁\𝑀 that for every 𝑎̅ ∈ 𝑀 

the proceeding is true:  

 𝔐+ ⊨ 𝜙(𝑎̅) ⇐⇒⊨ 𝐾𝜙(𝑎̅, 𝛼̅). 

 

 Approach of Shelah. In 2004 [91] a model of NIP theory was examined and 

quantifier elimination holds true for the expansion by all externally definable subsets 

that means that it is NIP was verified by S. Shelah. The biggest issue is the "there 

exists in the submodel" quantifier elimination. Towards a contradiction he proposed 

an indiscernible sequence 〈𝑏̅𝑛: 𝑛 < 𝜔〉 and shown that "there exists 𝑥 in the 

submodel" quantifier elimination for 𝜑(𝑥, 𝑎̅) failure implies that 𝜑(𝛼, 𝑏̅𝑛) is true 

whenever for some 𝛼 𝑛 is even from that it can be proven that the theory has IP. 

In 2005 Shelah’s simplified proof was found by V.V. Verbovskiy and F. 

Wagner [92], in short by using the notion of a finitely realizable type. In 2006 

Shelah’s theorem additional two re-proofs were given by A. Pillay using the notions 

of quantifier-free heirs and types and for the other re-proof he used the notions of 

quantifier-free coheirs and types. 

The analysis of approaches shows that we can control the number of one-types 

realizations using the theory of orthogonality [93]. The generalization of notions of 

neighborhood and quasi-neighborhood it is possible to formulate the following 

theorem 

 

Theorem 5.2.1 Consider a complete theory 𝑇 that for any set 𝐴 the next holds: 

1) ∀ type 𝑝 𝑓𝑟𝑜𝑚 𝑆1(𝐴), for each tuple 𝛾̅, that 𝑄𝑉𝑝(𝛾̅) = 𝑉𝑝(𝛾̅) 

2) ∀ type 𝑝, 𝑞 ∈ 𝑆1(𝐴) the proceeding is true. If 𝑝 ⊥𝑎 𝑞, then 𝑞 ⊥𝑎 𝑝. 

Then the expansion by all externally definable subsets of model of the theory 𝑇 

admits the elimination of quantifiers. 

 

Theorem 5.2.2 [94] Let 𝑀 be a weakly o-minimal ordered group of signature 

𝛴, 𝑁 be an elementary extension of 𝑀, i.e. 𝑁 ≻ 𝑀. Suppose that 𝛼 ∈ 𝑁\𝑀 such that 

𝑝 = 𝑡𝑝(𝛼|𝑀) is irrational, and 𝑀𝛼
+: = 〈𝑀; 𝛴+〉 is an expansion of 𝑀 by 𝑈2, such that 

it admits a uniform representation of 𝛴+-formulas by 𝛴-formulas. Then 𝑀+ preserves 

both weak o-minimality and group properties.  

 

 Proof: Consider an expansion of a weakly o-minimal group 𝑀 = 〈𝑄; =, <, +〉 
by predicate 𝑈(𝑥, 𝑦), such that  

 

 𝑀𝛼
+ ⊨ 𝑈(𝑎, 𝑏) ⇔ 𝑁 ⊨ 𝑎 < 𝑏 < 𝑎 + 𝛼. 

 

Let’s show that this expansion is externally definable. 

Consider an arbitrary quantifier free formula 𝐻+(𝑥1, . . . , 𝑥𝑛) of signature Σ+. 
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This formula can be represented in disjunctive normal form:  

 

 𝐻+(𝑥1, . . . , 𝑥𝑛) =∨ (∧ 𝐻𝑘(𝑥1, . . . , 𝑥𝑛) ∧∧ 𝑈(𝑥𝑖 , 𝑥𝑗)), 

 

where 𝑖, 𝑗 ∈ {1, . . . , 𝑛} and 𝐻𝑘 are atoms in language Σ. Then we can swap every 

𝑈(𝑥𝑖 , 𝑥𝑗) with 𝑥𝑖 < 𝑥𝑗 ∧ 𝑥𝑗 < 𝑥𝑖 + 𝛼, thus we get quantifier free formula 

𝐾𝐻+(𝑥1, . . . , 𝑥𝑛, 𝛼) such that  

 

 ∀𝑎1, . . . , 𝑎𝑛  𝑀𝛼
+ ⊨ 𝐻+(𝑎1, . . . , 𝑎𝑛) ⇔ 𝑁 ⊨ 𝐾𝐻+(𝑎1, . . . , 𝑎𝑛, 𝛼) 

 

Continue by induction. Let  

 

 ∀𝑎∀𝑏̅  𝑀𝛼
+ ⊨ Φ+(𝑎, 𝑏̅) ⇔ 𝑁 ⊨ 𝐾Φ+(𝑎, 𝑏̅, 𝛼) 

 

holds for any formula Φ+(𝑥, 𝑦̅) of depth 𝑛. Consider a formula ∃𝑥Φ+(𝑥, 𝑏̅) of depth 

𝑛 + 1. We should find a formula 𝐾∃𝑥Φ+(𝑥, 𝑏̅), such that 𝐾Φ+(𝑁, 𝑏̅, 𝛼̅) ∩ 𝑀 ≠ ∅ 

whenever 𝑀𝛼
+ ⊨ ∃𝑥Φ+(𝑥, 𝑏̅). By theorem 58 from [8, P. 1382] ∀𝛼̅ ∈ 𝑁\𝑀  ∃𝛽̅ ∈ 𝑁, 

such that for any formula 𝐾(𝑥, 𝑏̅, 𝛼̅) there exists a formula 𝐾′(𝑦̅, 𝛼̅, 𝛽̅) such that  

 

 ∀𝑏̅ ∈ 𝑀[𝐾(𝑁, 𝑏̅, 𝛼̅) ∩ 𝑀 ≠ ∅ ⇔ 𝑁 ⊨ 𝐾′(𝑏̅, 𝛼̅, 𝛽̅)] 
 

Consider a formula 𝐾Φ+(𝑥, 𝑏̅, 𝛼̅), the set 𝐾Φ+(𝑁, 𝑏̅, 𝛼̅) is a definable in weakly o-

minimal group structure. Thus it is union of finite number of convex sets. 

𝐾Φ+(𝑁, 𝑏̅, 𝛼̅) ∩ 𝑀 does not increase (in case some convex sets are cover irrational 

cut, two convex sets stick into one convex set). Thus every single definable set in 𝑀𝛼
+ 

is union of finite number of convex sets, and it follows by the definition that it is 

weakly o-minimal. 
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CONCLUSION 

 

The dissertation considers expansions of models of NIP theories. Such theories 

include the following: linearly ordered theories, countably categorical theories, 

weakly o-minimal theories, theories of finite convexity rank. The aim was to 

investigate preservation of certain properties(countable categoricity, weak o-

minimality, convexity rank) of models by expanding by unary predicates, 

equivalence relations or binary predicates. The key results in this context are as 

follows: 

Expansion of model of countably categorical weakly o-minimal theory of finite 

convexity rank by a finite family of convex unary predicates preserves countable 

categoricity and convexity rank. Similar result for quite o-minimal countably 

categorical theories: Expansion of model of countably categorical quite o-minimal 

theory of finite convexity rank by a finite family of convex unary predicates 

preserves countable categoricity and convexity rank. 

More complicated result for expansion by equivalence relations: Touchstone 

for maintaining both countable categoricity and weak o-minimality (and in addition 

to this the 1-indiscernibility) when expanding a model of a 1-indiscernible countably 

categorical weakly o-minimal theory of finite convexity rank by an equivalence 

relation partitioning the universe into infinitely many infinite convex classes. 

Results on expansions by binary predicates: Touchstone for maintaining 

countable categoricity for a 1-indiscernible weakly o-minimal expansion of countably 

categorical weakly o-minimal theory of convexity rank 1 by every single binary 

predicate. 

Touchstone for maintaining countable categoricity for a weakly o-minimal 

expansion of a non-1-indiscernible countably categorical weakly o-minimal theory of 

convexity rank 1 by random binary predicate. 

Maintaining weak o-minimality when expanding a weakly o-minimal ordered 

group by an externally definable binary predicate. 

 Assessment of the completeness of the aims of the work. The results of 

investigation are new received using on our own tools and methods. Conditions of 

preservation of either weak o-minimality, countable categoricity under expansion by 

unary or binary predicates were found. Consequently, the goals of the work have 

been entirely accomplished. 

 Suggestions on applications of the obtained results. Obtained results in this 

field of model theory can be used throughout the study of models of NIP theories, 

particularly expansions of weakly o-minimal theories. Results on the expansions by 

externally definable sets can be applied to theories of algebraic structures. 

 Assessment of scientific level of the work in comparison with the 

achievements in the scientific direction. The findings obtained in accordance with 

the best contributions of foreign colleagues are not lacking and add to the study of the 

expansion of models of NIP theories.. 
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